Skip to main content
Log in

Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The association between caffeine consumption and various psychiatric manifestations has long been observed. The objective was to assess the behavioral profile in offspring of Swiss mice treated during pregnancy and lactation with caffeine. For this purpose, two groups (n = 6 each and BW ~ 35 g) of female mice were treated during pregnancy and lactation by: tap water and caffeine solution at a concentration of 0.3 mg/mL through oral route. The offspring obtained, by completing 70 days of life, was underwent a behavioral battery test. Statistical analysis was performed by student t test and the different significance adopted was p < 0.05. According to our results, it was not found any significant differences in tail suspension and forced swimming tests. In anxiety related responses however, the mice of caffeine group had greater number of fecal pellets (178 %, p = 0.001) in the open field test, higher number of attempts (51 %, p = 0.03) in light-dark box and decreased percentage of entries in open arms (41 %, p = 0.01) in elevated plus maze test. Moreover, in the marble burying test, there was a significant decrease in the number of buried marbles compared with controls (110 %, p = 0,002). In the meantime, in the von Frey test, it was observed an exacerbation of mechanical allodynia both in basal conditions and after the carrageenan administration (p < 0.001). Furthermore, caffeine treatment during pregnancy and lactation causes long-term behavioral changes in the mice offspring that manifest later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adén U (2011) Methyxanthines during pregnancy and early postnatal life. Handb Exp Pharmacol 200:373–389

    Article  PubMed  Google Scholar 

  • Andersen SL (2005) Stimulants and the developing brain. Trends Pharmacol Sci 26:237–243

    Article  CAS  PubMed  Google Scholar 

  • Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21(2):205–235

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A, Lewander T, Söderberg U (1987) Marble burying and spontaneous motor activity in mice: interactions over days and the effect of diazepam. Scand J Psychol 28(3):242–249

    Article  CAS  PubMed  Google Scholar 

  • Bakker R, Steegers EA, Obradov A, Raat H, Hofman A, Jaddoe VW (2010) Maternal caffeine intake from coffee and tea, fetal growth, and the risks of adverse birth outcomes: the generation R study. Am J Clin Nutr 91(6):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Bastia E, Varani K, Monopoli A, Bertorelli R (2002) Effects of A1 and A2 A adenosine receptor ligands in mouse acute models of pain. Neuroscience Letters 328:241–244

    Article  CAS  PubMed  Google Scholar 

  • Björklund O, Kahlström J, Salmi P, Fredholm BB (2008) Perinatal caffeine, acting on maternal adenosine A1 receptors, causes long-lasting behavioral changes in mouse offspring. PLoS One 3(12):e3977

    Article  PubMed  PubMed Central  Google Scholar 

  • Bracken MB, Triche EW, Belanger K, Hellenbrand K, Leaderer BP (2003) Association of maternal caffeine consumption with decrements in fetal growth. Am J Epidemiol 157(5):456–466

    Article  PubMed  Google Scholar 

  • Brent RL, Christian MS, Diener RM (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92(2):152–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38(2):107–125

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Ferré S, Vaugeois JM, Chen JF (2007) Potential therapeutic interest of adenosine A2 A receptors in psychiatric disorders. Curr Pharm Des 14(15):1512–1524

    Article  Google Scholar 

  • Da Silva RS, Richetti SK, Silveira VGD, Battastini AMO, Bogo MR, Lara DR, Bonan CD (2008) Maternal caffeine intake affects acetylcholinesterase in hippocampus of neonate rats. Int J Dev Neurosci 26(3):339–343

    Article  PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2000) The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A2 A adenosine receptor antagonists. Psychopharmacology 148(2):153–163

    Article  PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2005) Reduced appetite for caffeine in adenosine A2 A receptor knockout mice. Eur J Pharmacol 519(3):290–291

    Article  PubMed  Google Scholar 

  • Fisher CE, Hughes RN (1996) Effects of diazepam and cyclohexyladenosine on open-field behavior in rats perinatally exposed to caffeine. Life Sci 58(8):701–709

    Article  CAS  PubMed  Google Scholar 

  • Foxe JJ, Morie KP, Laud PJ, Rowson MJ, de Bruin EA, Kelly SP (2012) Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology 62(7):2320–2327

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51(1):83–133

    CAS  PubMed  Google Scholar 

  • Giménez-Llort L, Fernández-Teruel A, Escorihuela RM, Fredholm BB, Tobeña A, Pekny M, Johansson B (2002) Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci 16(3):547–550

    Article  PubMed  Google Scholar 

  • Ginsberg G, Hattis D, Russ A, Sonawane B (2004) Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxic Environ Health A 67(4):297–329

    Article  CAS  Google Scholar 

  • Green PJ, Suls J (1996) The effects of caffeine on ambulatory blood pressure, heart rate, and mood in coffee drinkers. J Behav Med 19(2):111–128

    Article  CAS  PubMed  Google Scholar 

  • Grimm VE, Frieder B (1988) Prenatal caffeine causes long lasting behavioral and neurochemical changes. Int J Neurosci 41(1–2):15–28

    Article  CAS  PubMed  Google Scholar 

  • Groisser DS, Rosso P, Winick M (1982) Coffee consumption during pregnancy: subsequent behavioral abnormalities of the offspring. J Nutr 112(4):829–832

    CAS  PubMed  Google Scholar 

  • Grosso LM, Bracken MB (2005) Caffeine metabolism, genetics, and perinatal outcomes: a review of exposure assessment considerations during pregnancy. Ann Epidemiol 15(6):460–466

    Article  PubMed  Google Scholar 

  • Haskell CF, Kennedy DO, Wesnes KA, Scholey AB (2005) Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology 179(4):813–825

    Article  CAS  PubMed  Google Scholar 

  • Heckman MA, Weil J, Mejia D, Gonzalez E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–R87

    Article  CAS  PubMed  Google Scholar 

  • Higgins GA, Grzelak ME, Pond AJ, Cohen-Williams ME, Hodgson RA, Varty GB (2007) The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine a 2 a receptors. Behav Brain Res 185(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Hughes RN, Beveridge IJ (1990) Sex-and age-dependent effects of prenatal exposure to caffeine on open-field behavior, emergence latency and adrenal weights in rats. Life Sci 47(22):2075–2088

    Article  CAS  PubMed  Google Scholar 

  • Hughes RN, Beveridge IJ (1991) Behavioral effects of exposure to caffeine during gestation, lactation or both. Neurotoxicol Teratol 13(6):641–647

    Article  CAS  PubMed  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Halin Z, Xu XJ, Hardermark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci 98(16):9407–9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juárez-méndez S, Carretero R, Martínez-Tellez R, Silva-gómez AB, Flores G (2006) Neonatal caffeine administration causes a permanent increase in the dendritic length of prefrontal cortical neurons of rats. Synapse 60(6):450–455

    Article  PubMed  Google Scholar 

  • Karlsten R, Post C, Hide I, Daly JW (1991) The antinociceptive effect of intrathecally administered adenosine analogs in mice correlates with the affinity for the A1-adenosine receptor. Neuroscie Lett 121:267–270

    Article  CAS  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassant G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388(6643):674–678

    Article  CAS  PubMed  Google Scholar 

  • León D, Albasanz JL, Ruiz MA, Martin M (2005) Chronic caffeine or theophylline intake during pregnancy inhibits A1 receptor function in the rat brain. Neuroscience 131(2):481–489

    Article  PubMed  Google Scholar 

  • Loke WH (1988) Effects of caffeine on mood and memory. Physiol Behav 44(3):367–372

    Article  CAS  PubMed  Google Scholar 

  • Lombardelli G, Balduini W, Feduzi A, Peruzzi G, Cattabeni F (1984) Long-lasting tolerance to stimulatory effects of perinatal caffeine treatment. Psychopharmacology 84(2):285–286

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo AM, León D, Castillo CA, Ruiz MA, Albasanz JL, Martín M (2010) Maternal caffeine intake during gestation and lactation down-regulates adenosine A1 receptor in rat brain from mothers and neonates. J Neurosci Res 88:1252–1261

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Girardon S, Mullot J, Brocco M, Dekeyne A (2002) Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin 1 (NK 1) receptor antagonists. Neuropharmacology 42(5):677–684

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, Ueki H (2007) Clinical importance of caffeine dependence and abuse. Psychiatry Clin Neurosci 61(3):263–268

    Article  CAS  PubMed  Google Scholar 

  • Pan HZ, Chen HH (2007) Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats. Psychopharmacology 191(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Porciúncula LO, Sallaberry C, Mioranzza S, Botton PHS, Rosemberg DB (2013) The Janus face of caffeine. Neurochem Int 63(6):594–609

    Article  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57(2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Rybak ME, Sternberg MR, Pao CI, Ahluwalia N, Pfeiffer CM (2015) Urine excretion of caffeine and select caffeine metabolites is common in the US population and associated with caffeine intake. J Nutr 145(4):766–774

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 317:1–11

    Article  Google Scholar 

  • Shi D, Nikodijević O, Jacobson KA, Daly JW (1993) Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Mol Neurobiol 13(3):247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S, Hattori N (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189(2):180–185

    Article  PubMed  Google Scholar 

  • Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, Ghestem A, Nesa MP, Bassot E, Szabó E, Baqi Y, Müller CE, Tomé AR, Ivanov A, Isbrandt D, Zilberter Y, Cunha RA, Esclapez M, Bernard C (2013) Adenosine receptor antagonists including caffeine alter fetal brain development. Sci Transl Med 5(197):1–12

    Article  Google Scholar 

  • Sinton CM, Valatx JL, Jouvet M (1981) Gestational caffeine modifies offspring behaviour in mice. Psychopharmacology 75(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Soellner DE, Grandys T, Nuñez JL (2009) Chronic prenatal caffeine exposure impairs novel object recognition and radial arm maze behaviors in adult rats. Behav Brain Res 205(1):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 38:757–762

    Article  CAS  PubMed  Google Scholar 

  • Tchekalarova J, Kubova H, Mares P (2005) Postnatal caffeine exposure: effects on motor skills and locomotor activity during ontogenesis. Behav Brain Res 160:99–106

    Article  CAS  PubMed  Google Scholar 

  • Thierry B, Steru L, Simon P, Porsolt RD (1986) The tail suspension test: ethical considerations. Psychopharmacology 90(2):284–285

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 204(2):361–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A1 and A2 A receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29(3):871–881

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482

    Article  CAS  PubMed  Google Scholar 

  • Wang HR, Woo YS, Bahk WM (2015) Caffeine-induced psychiatric manifestations: a review. Int Clin Psychopharmacol 30(4):179–182

    Article  PubMed  Google Scholar 

  • Wicke KM, Gross G (2005) Marble burying behavior is prevented by anxiolytics as well as by motorstimulants. Pharmacopsychiatry 38(05):A253

    Article  Google Scholar 

  • Wu WP, Hao JX, Halldner L, Lövdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  CAS  PubMed  Google Scholar 

  • Yacoubi ME, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2 A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2 A receptor knockout mice. Br J Pharmacol 134(1):68–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerberg B, Carr KL, Scott A, Lee HH, Weider JM (1991) The effects of postnatal caffeine exposure on growth, activity and learning in rats. Pharmacol Biochem Behav 39(4):883–888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) for granting a fellowship to Roberto Laureano Melo and the Research Support Foundation of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ) for funding the present study. We also thank Antonio Vicente Conrado Leite José da Costa and Ipojucan Pereira de Souza employers of Federal Rural University of Rio de Janeiro (UFRuralRJ) for the support in the Animal Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington da Silva Côrtes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laureano-Melo, R., da Silveira, A.L.B., de Azevedo Cruz Seara, F. et al. Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine. Metab Brain Dis 31, 1071–1080 (2016). https://doi.org/10.1007/s11011-016-9847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9847-5

Keywords

Navigation