Skip to main content

Advertisement

Log in

Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer’s disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahanjan M, Ghaffari J, Mohammadpour G, Nasrolahie M, Haghshenas MR, Mirabi AM (2011) Antibacterial activity of Satureja bakhtiarica bung essential oil against some human pathogenic bacteria. Afr J Microbiol Res 5:4764–4768

    Google Scholar 

  • Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T (2007) A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by abeta(25–35). Behav Brain Res 180:139–145

    Article  CAS  PubMed  Google Scholar 

  • Azami K, Etminani M, Tabrizian K, Salar F, Belaran M, Hosseini A, Hosseini-Sharifabad A, Sharifzadeh M (2010) The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine–bucladesine combination in rats. Eur J Pharmacol 636:102–107

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Zhang X, Chen L, Zhang J, Zhang L, Zhao X, Zhao T, Zhao Y (2014) Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-kappaB, MMP-9 and up-regulated claudin-5 expression. Neurochem Res 39:1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Balali P, Soodi M, Saeidnia S (2012) Protective effects of some medicinal plants from Lamiaceae family against beta-amyloid induced toxicity in PC12 cell. Tehran Univ Med J (TUMJ) 70:402–409

    Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 25

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA (1997) Beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 10:495–506

    Article  CAS  PubMed  Google Scholar 

  • Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Hogen T, Schmidt F, Giese A, Vassallo N (2013) Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 11:28

    Google Scholar 

  • Campanari ML, Garcia-Ayllon MS, Blazquez-Llorca L, Luk WK, Tsim K, Saez-Valero J (2014) Acetylcholinesterase protein level is preserved in the Alzheimer’s brain. J Mol Neurosci 53:446–453

    Article  CAS  PubMed  Google Scholar 

  • Carter J, Lippa CF (2001) Beta-amyloid, neuronal death and Alzheimer’s disease. Curr Mol Med 1:733–737

    Article  CAS  PubMed  Google Scholar 

  • Cavallucci V, D’amelio M, Cecconi F (2012) Abeta toxicity in Alzheimer’s disease. Mol Neurobiol 45:366–378

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281

    Article  CAS  PubMed  Google Scholar 

  • Cheng HY, Hsieh MT, Tsai FS, Wu CR, Chiu CS, Lee MM, Xu HX, Zhao ZZ, Peng WH (2010) Neuroprotective effect of luteolin on amyloid beta protein (25–35)-induced toxicity in cultured rat cortical neurons. Phytother Res 24:S102–S108

    Article  PubMed  Google Scholar 

  • Choi SH, Hur JM, Yang EJ, Jun M, Park HJ, Lee KB, Moon E, Song KS (2008) Beta-secretase (BACE1) inhibitors from Perilla frutescens var. acuta. Arch Pharm Res 31:183–187

    Article  CAS  PubMed  Google Scholar 

  • Chtourou Y, Fetoui H, Gdoura R (2014) Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress. Biol Trace Elem Res 158:376–383

    Article  CAS  PubMed  Google Scholar 

  • Contestabile A (2002) Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum 1:41–55

    Article  CAS  PubMed  Google Scholar 

  • Dashti A, Soodi M, Amani N (2014) Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid. Environ Toxicol 12:22041

    Google Scholar 

  • Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ayllon MS, Small DH, Avila J, Saez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and beta-amyloid. Front Mol Neurosci 4:1–9

    Article  Google Scholar 

  • Ghahremanitamadon F, Shahidi S, Zargooshnia S, Nikkhah A, Ranjbar A, Soleimani Asl S (2014) Protective effects of Borago officinalis extract on amyloid beta-peptide(25–35)-induced memory impairment in male rats: a behavioral study. Biomed Res Int 798535:11

    Google Scholar 

  • Hajimehdipoor H, Ajani AGY, Saeidnia S (2014a) Comparative study of the total phenol content and antioxidant activity of some medicinal herbal extracts. Res J Pharmacognosy 1:21–25

    CAS  Google Scholar 

  • Hajimehdipoor H, Mosaddegh M, Naghibi F, Haeri A, Hamzeloo-Moghadam M (2014b) Natural sesquiterpen lactones as acetylcholinesterase inhibitors. An Acad Bras Cienc 86(2):801–805

    Article  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Heo JH, Hyon L, Lee KM (2013) The possible role of antioxidant vitamin C in Alzheimer’s disease treatment and prevention. Am J Alzheimers Dis Other Demen 28:120–125

    Article  PubMed  Google Scholar 

  • Hosseini-Sharifabad A, Mohammadi-Eraghi S, Tabrizian K, Soodi M, Khorshidahmad T, Naghdi N, Abdollahi M, Beyer C, Roghani A, Sharifzadeh M (2011) Effects of training in the Morris water maze on the spatial learning acquisition and VAChT expression in male rats. DARU, J Pharm Sci 19:166–172

    CAS  Google Scholar 

  • Howes MJ, Houghton PJ (2012) Ethnobotanical treatment strategies against Alzheimer’s disease. Curr Alzheimer Res 9:67–85

    Article  CAS  PubMed  Google Scholar 

  • Iuvone T, De Filippis D, Esposito G, D’amico A, Izzo AA (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441

    PubMed  PubMed Central  Google Scholar 

  • Khodabakhsh A, Gohari A, Davood A, Saeidnia S, Thesis, 1388–1389 (2010). Phytochemical Investigation of Satureja bachtiarica. Pharm.D, Islamic Azad university of Tehran

  • Kramer D, Minichiello L (2010) Cell culture of primary cerebellar granule cells. Methods Mol Biol 633:233–239

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Meng F, Zhang L, Liu A, Qin H, Lan X, Li L, Du G (2011) Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in beta-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 16:2084–2096

    Article  CAS  PubMed  Google Scholar 

  • Lleo A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 57:513–533

    Article  CAS  PubMed  Google Scholar 

  • Luquin MR, Martinez-Vila E, Saldise L (1997) Mechanisms of cell death in Alzheimer’s disease. Rev Med Univ Navarra 41:34–45

    CAS  PubMed  Google Scholar 

  • Manayi A, Mirnezami T, Saeidnia S, Ajani Y (2012) Pharmacognostical evaluation, phytochemical analysis and antioxidant activity of the roots of Achillea tenuifolia LAM. Pharmacogn J 4:14–19

    Article  Google Scholar 

  • Mohammadpour G, Marzony ET, Farahmand M (2012) Evaluation of the anti-Leishmania major activity of Satureja bakhtiarica essential oil in vitro. Nat Prod Commun 7:133–136

    CAS  PubMed  Google Scholar 

  • Naghibi F, Mosaddegh M, Motamed SM, Ghorbani A (2005) Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. IJPR 2:63–79

    Google Scholar 

  • Orhan IE, Senol FS, Sener B (2012) Recent approaches towards selected lamiaceae plants for their prospective use in neuroprotection. Stud Nat Prod Chem 38:397–415

    Article  CAS  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  • Parks JK, Smith TS, Trimmer PA, Bennett Jr JP, Parker Jr WD (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76:1050–1056

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (eds) (1997) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Perry E, Howes MJ (2011) Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther 17:683–698

    Article  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    Article  CAS  PubMed  Google Scholar 

  • Sepand MR, Soodi M, Hajimehdipoor H, Sahraei E (2013) Comparison of neuroprotective effects of melissa officinalis total extract and its acidic and non-acidic fractions against A β-induced toxicity. Iran J Pharm Res 12:415–423

    PubMed  PubMed Central  Google Scholar 

  • Singhal AK, Naithani V, Bangar OP (2012) Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int J Nutr Pharmacol Neurol Dis 2:84–91

  • Soodi M, Sharifzadeh M, Naghdi N, Ostad N, Abdollahi M, Roghani A (2007) Systemic and developmental exposure to lead causes spatial memory deficits and a reduction in COX-2 immunoreactivity in the hippocampus of male rats. J Neurosci Res 85:3183–3192

    Article  CAS  PubMed  Google Scholar 

  • Soodi M, Naghdi N, Hajimehdipoor H, Choopani S, Sahraei E (2014) Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Res Pharm Sci 9:107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanichev MY, Zdobnova IM, Zarubenko II, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV (2004) Amyloid-beta(25–35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol Behav 80:647–655

    Article  CAS  PubMed  Google Scholar 

  • Sun MK, Alkon DL (2002) Impairment of hippocampal CA1 heterosynaptic transformation and spatial memory by beta-amyloid(25–35). J Neurophysiol 87:2441–2449

    CAS  PubMed  Google Scholar 

  • Tayeb HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther 134:8–25

    Article  CAS  PubMed  Google Scholar 

  • Tepe B (2015) Inhibitory effect of Satureja on certain types of organisms. Rec Nat Prod 9:1–18

    Google Scholar 

  • Topcu G, Kusman T (2014) Lamiaceae family plants as a potential anticholinesterase source in the treatment ofAlzheimer’s disease. Bezmialem Science 1:1–25

    Article  Google Scholar 

  • Tsai FS, Cheng HY, Hsieh MT, Wu CR, Lin YC, Peng WH (2010) The ameliorating effects of luteolin on beta-amyloid-induced impairment of water maze performance and passive avoidance in rats. Am J Chin Med 38:279–291

    Article  CAS  PubMed  Google Scholar 

  • Vauzour D (2012) Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxidative Med Cell Longev 914273:3

    Google Scholar 

  • Wei H, Leeds PR, Qian Y, Wei W, Chen R, Chuang D (2000) Beta-amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment. Eur J Pharmacol 392:117–123

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Kawashima S (2001) Effects of amyloid-beta-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol 412:265–272

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Matsuno T, Kawashima S (2002) Antiamnesic effects of azaindolizinone derivative ZSET845 on impaired learning and decreased ChAT activity induced by amyloid-beta 25–35 in the rat. Brain Res 945:259–265

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H (2014) Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 35:741–751

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Author wish to thank Tehran University of Medical Sciences and Health Services Grant No. 9108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maliheh Soodi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soodi, M., Saeidnia, S., Sharifzadeh, M. et al. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease. Metab Brain Dis 31, 395–404 (2016). https://doi.org/10.1007/s11011-015-9773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9773-y

Keywords

Navigation