Skip to main content

Advertisement

Log in

Protective Effects of Naringenin on Iron-Overload-Induced Cerebral Cortex Neurotoxicity Correlated with Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron is a component of several metalloproteins involved in crucial metabolic processes such as oxygen sensing and transport, energy metabolism, and DNA synthesis. This metal progressively accumulates in the pathogenesis of Alzheimer’s (AD) and Parkinson’s (PD) diseases. Naringenin (NGEN), a natural flavonoid compound, has been reported to possess neuroprotective effect against PD-related pathology, however, the mechanisms underlying its beneficial effects are poorly defined. Thus, the aim of this study is to investigate the potential mechanism involved in the cytoprotection of NGEN against iron-induced neurotoxicity in the cerebral cortex of Wistar rats. Animals that were given repetitive injections of iron dextran for a total of 4 weeks showed a significant increase in lipid and protein markers such as thiobarbituric reactive acid substances, protein carbonyl product content levels, and DNA apoptosis in the cerebral cortex. These changes were accompanied by a decrease of enzymatic antioxidants like superoxide dismutase and catalase and in the levels of nonenzymatic antioxidants like total thiols and ascorbic acid. The activity of glutathione peroxidase remained unchanged in rats. A significant decrease in acetylcholinesterase and Na+/K+-ATPase activities was also shown, with a substantial rise in the nitric oxide levels. Coadministration of NGEN to iron-treated rats significantly improved antioxidant enzyme activities and attenuated oxidative damages observed in the cerebral cortex. The potential effect of NGEN to prevent iron-induced neurotoxicity was also reflected by the microscopic study, indicative of its neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bastian TW, Prohaska JR, Georgieff MK, Anderson GW (2014) Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression. Endocrinology 155(3):1157–1167

    Article  PubMed  Google Scholar 

  2. Taba P (2013) Metals and movement disorders. Curr Opin Neurol 26(4):435–441

    Article  CAS  PubMed  Google Scholar 

  3. Dusek P, Jankovic J, Le W (2012) Iron dysregulation in movement disorders. Neurobiol Dis 46:1–18

    Article  CAS  PubMed  Google Scholar 

  4. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S (2013) The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 5:1174–1194

    Article  Google Scholar 

  5. Naziroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  Google Scholar 

  6. Nazıroğlu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32:134–141

    Article  PubMed  Google Scholar 

  7. Johnstone D, Milward EA (2010) Genome-wide microarray analysis of brain gene expression in mice on a short-term high iron diet. Neurochem Int 56(6–7):856–863

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W (2003) Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Eur J Pharmacol 467(1–3):41–47

    Article  CAS  PubMed  Google Scholar 

  9. Jomova K, Valko M (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des 17:3460–3473

    Article  CAS  PubMed  Google Scholar 

  10. Dai MC, Zhong ZH, Sun YH et al (2013) Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci Lett 536:41–46

    Article  CAS  PubMed  Google Scholar 

  11. Heo HJ, Kim DO, Shin SC, Kim MJ, Kim BG, Shin DH (2004) Effect of antioxidant flavonone, naringenin, from Citrus junos on neuroprotection. J Agric Food Chem 52:1520–1525

    Article  CAS  PubMed  Google Scholar 

  12. Sonia Angeline M, Sarkar A, Anand K, Ambasta RK, Kumar P (2013) Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 254:379–394

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X (2012) Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res 146:354–359

    Article  CAS  PubMed  Google Scholar 

  14. Khan MB, Khan MM, Khan A et al (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61:1081–1093

    Article  CAS  PubMed  Google Scholar 

  15. Morales P, Vargas R, Videla LA, Fernández V (2013) Nrf2 activation in the liver of rats subjected to a preconditioning sub-chronic iron protocol. Food Funct 5(2):243–250

    Article  Google Scholar 

  16. Raza SS, Khan MM, Ahmad A (2012) Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience 230:157–171

    Article  PubMed  Google Scholar 

  17. Venkateshappa C, Harish G, Mahadevan A, Bharath MS, Shankar S (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37:1601–1614

    Article  CAS  PubMed  Google Scholar 

  18. Shinomol GK, Muralidhara (2007) Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of Khesari dhal (Lathyrus sativus) and detoxified Khesari dhal. Neurotoxicology 28:798–806

    Article  CAS  PubMed  Google Scholar 

  19. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Ezymol 86:421–431

    Article  Google Scholar 

  20. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Method Enzymol 233:357–363

    Article  CAS  Google Scholar 

  21. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JBT (2001) Diphenyl diselenide and ascorbic changes deposition of selenium and ascorbic in liver and brain of mice. Pharmacol Toxicol 88:119–125

    Article  CAS  PubMed  Google Scholar 

  22. Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  23. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  24. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  25. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acryl amide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  26. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121

    Article  CAS  Google Scholar 

  27. Ellman GE, Courtney KD, Andersen JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  28. de Lima D, Roque GM, de Almeida EA (2013) In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio). Mar Environ Res 91:45–51

    Article  PubMed  Google Scholar 

  29. Wyse AT, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  30. Kanno S, Shouji A, Hirata R, Asou K, Ishikawa M (2004) Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci 75:353–365

    Article  CAS  PubMed  Google Scholar 

  31. Lakshmi D, Gopinath K, Jayanthy G, Anjum S, Prakash D, Sudhandiran (2012) Ameliorating effect of fish oil on acrylamide induced oxidative stress and neuronal apoptosis in cerebral cortex. Neurochem Res 37(9):1859–1867

    Article  CAS  PubMed  Google Scholar 

  32. Puntarulo S (2005) Iron, oxidative stress and human health. Mol Aspects Med 26:299–312

    Article  CAS  PubMed  Google Scholar 

  33. Mendes JF, Arruda SF, Siqueira EM, Ito MK, Silva EF (2009) Iron status and oxidative stress biomarkers in adults: a preliminary study. Nutrition 25:379–384

    Article  CAS  PubMed  Google Scholar 

  34. Nazıroğlu M, Akay MB, Çelik Ö, Yıldırım Mİ, Balcı E, Yürekli VA (2013) Capparis ovata modulates brain oxidative toxicity and epileptic seizures in pentylentetrazol-induced epileptic rats. Neurochem Res 38(4):780–788

    Article  PubMed  Google Scholar 

  35. Uranga RM, Giusto NM, Salvador GA (2009) Iron-induced oxidative injury differentially regulates PI3K/Akt/GSK3beta pathway in synaptic endings from adult and aged rats. Toxicol Sci 111(2):331–344

    Article  CAS  PubMed  Google Scholar 

  36. Szarka A, Lőrincz T (2013) The role of ascorbate in protein folding. Protoplasma. doi:10.1007/s00709-013-0560-5

    PubMed  Google Scholar 

  37. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem 85(1):180–192

    Article  CAS  PubMed  Google Scholar 

  38. Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69(2):339–345

    Article  CAS  PubMed  Google Scholar 

  39. Nazıroğlu M, Kozlu S, Yorgancıgil E, Uğuz AC, Karakuş K (2013) Rose oil (from Rosa × damascena Mill.) vapor attenuates depression-induced oxidative toxicity in rat brain. J Nat Med 67(1):152–158

    Article  PubMed  Google Scholar 

  40. Hacihamdioglu DÖ, Kurekci AE, Gursel O et al (2013) Evaluation of lipid peroxidation and antioxidant system in healthy iron-replete infants receiving iron prophylaxis. Nutrition 29(1):138–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The present work was supported by the grants of DGRST (Appui a la Recherche Universitaire de base, ARUB 99/UR/08-73), Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Chtourou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chtourou, Y., Fetoui, H. & Gdoura, R. Protective Effects of Naringenin on Iron-Overload-Induced Cerebral Cortex Neurotoxicity Correlated with Oxidative Stress. Biol Trace Elem Res 158, 376–383 (2014). https://doi.org/10.1007/s12011-014-9948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9948-0

Keywords

Navigation