Skip to main content
Log in

Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Evidence for folate’s protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, \(\sim\)30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5–MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data will be made available upon request to the authors.

References

  1. Kim Y-I (2016) Current status of folic acid supplementation on Colorectal Cancer Prevention. Curr Pharmacol Rep 2:21–33. https://doi.org/10.1007/s40495-016-0046-1

    Article  CAS  Google Scholar 

  2. Sharma J, Krupenko SA (2020) Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 324:109091. https://doi.org/10.1016/j.cbi.2020.109091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashkavand Z, O’Flanagan C, Hennig M et al (2017) Metabolic reprogramming by Folate Restriction leads to a less aggressive Cancer phenotype. Mol Cancer Res 15:189–200. https://doi.org/10.1158/1541-7786.MCR-16-0317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crider KS, Bailey LB, Berry RJ (2011) Folic acid food fortification—its history, effect, concerns, and future directions. Nutrients 3:370–384. https://doi.org/10.3390/nu3030370

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hirsch S, de la Maza P, Barrera G et al (2002) The Chilean flour folic acid fortification program reduces serum homocysteine levels and masks vitamin B-12 deficiency in elderly people. J Nutr 132:289–291. https://doi.org/10.1093/jn/132.2.289

    Article  CAS  PubMed  Google Scholar 

  6. Pfeiffer CM, Caudill SP, Gunter EW et al (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82:442–450. https://doi.org/10.1093/ajcn.82.2.442

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y-H, Tang J-Y, Wu M-J et al (2011) Effect of Folic Acid Supplementation on Cardiovascular outcomes: a systematic review and Meta-analysis. PLoS ONE 6:e25142. https://doi.org/10.1371/journal.pone.0025142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel KR, Sobczyńska-Malefora A (2017) The adverse effects of an excessive folic acid intake. Eur J Clin Nutr 71:159–163. https://doi.org/10.1038/ejcn.2016.194

    Article  CAS  PubMed  Google Scholar 

  9. Saini RK, Nile SH, Keum Y-S (2016) Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int 89:1–13. https://doi.org/10.1016/j.foodres.2016.07.013

    Article  CAS  PubMed  Google Scholar 

  10. Scaglione F, Panzavolta G (2014) Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 44:480–488. https://doi.org/10.3109/00498254.2013.845705

    Article  CAS  PubMed  Google Scholar 

  11. Malki A, ElRuz RA, Gupta I et al (2020) Molecular mechanisms of Colon cancer progression and metastasis: recent insights and advancements. Int J Mol Sci 22:E130. https://doi.org/10.3390/ijms22010130

    Article  CAS  Google Scholar 

  12. Dekker E, Tanis PJ, Vleugels JLA et al (2019) Colorectal cancer. Lancet 394:1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0

    Article  PubMed  Google Scholar 

  13. Fardous AM, Beydoun S, James AA et al (2021) The timing and duration of Folate Restriction differentially impacts Colon carcinogenesis. Nutrients 14:16. https://doi.org/10.3390/nu14010016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanjoaquin MA, Allen N, Couto E et al (2005) Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 113:825–828. https://doi.org/10.1002/ijc.20648

    Article  CAS  PubMed  Google Scholar 

  15. Giovannucci E (2002) Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr 132. https://doi.org/10.1093/jn/132.8.2350S. :2350S-2355S

  16. Baggott JE, Oster RA, Tamura T (2012) Meta-analysis of cancer risk in folic acid supplementation trials. Cancer Epidemiol 36:78–81. https://doi.org/10.1016/j.canep.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  17. Cole BF, Baron JA, Sandler RS et al (2007) Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA 297:2351–2359. https://doi.org/10.1001/jama.297.21.2351

    Article  CAS  PubMed  Google Scholar 

  18. Hirsch S, Sanchez H, Albala C et al (2009) Colon cancer in Chile before and after the start of the flour fortification program with folic acid. Eur J Gastroenterol Hepatol 21:436–439. https://doi.org/10.1097/MEG.0b013e328306ccdb

    Article  PubMed  Google Scholar 

  19. Pan Y, Ma S, Cao K et al (2018) Therapeutic approaches targeting cancer stem cells. J Cancer Res Ther 14:1469–1475. https://doi.org/10.4103/jcrt.JCRT_976_17

    Article  CAS  PubMed  Google Scholar 

  20. Walcher L, Kistenmacher A-K, Suo H et al (2020) Cancer Stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280. https://doi.org/10.3389/fimmu.2020.01280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bayik D, Lathia JD (2021) Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer 21:526–536. https://doi.org/10.1038/s41568-021-00366-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuşoğlu A, Biray Avcı Ç (2019) Cancer stem cells: a brief review of the current status. Gene 681:80–85. https://doi.org/10.1016/j.gene.2018.09.052

    Article  CAS  PubMed  Google Scholar 

  23. Wen Y, Hou Y, Yi X et al (2021) EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 11:1795–1813. https://doi.org/10.7150/thno.48101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baisiwala S, Hall RR, Saathoff MR et al (2020) LNX1 modulates Notch1 signaling to promote expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 12:E3505. https://doi.org/10.3390/cancers12123505

    Article  CAS  Google Scholar 

  25. Aguilar-Gallardo C, Simón C (2013) Cells, stem cells, and cancer stem cells. Semin Reprod Med 31:5–13. https://doi.org/10.1055/s-0032-1331792

    Article  CAS  PubMed  Google Scholar 

  26. Colak S, Zimberlin CD, Fessler E et al (2014) Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ 21:1170–1177. https://doi.org/10.1038/cdd.2014.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402. https://doi.org/10.1016/j.stem.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  28. Dylla SJ, Beviglia L, Park I-K et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3:e2428. https://doi.org/10.1371/journal.pone.0002428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson BJ, Schatton T, Zhan Q et al (2011) ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 71:5307–5316. https://doi.org/10.1158/0008-5472.CAN-11-0221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123. https://doi.org/10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Aoyagi M, Wakimoto H et al (2010) Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg 113:310–318. https://doi.org/10.3171/2010.2.JNS091607

    Article  PubMed  Google Scholar 

  32. Cheng Q, Zheng H, Li M et al (2022) LGR4 cooperates with PrPc to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis. Cancer Lett 215725. https://doi.org/10.1016/j.canlet.2022.215725

  33. Therachiyil L, Krishnankutty R, Uddin S, Korashy HM (2022) Aryl hydrocarbon receptor (AhR) promotes cell growth, induces Stemness like characteristics and metastasis in ovarian Cancer cells via activation of akt, β-Catenin and EMT. FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.R5035. 36 Suppl 1

    Article  Google Scholar 

  34. Yan S, Li Q, Li S et al (2022) The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep. https://doi.org/10.1007/s11033-022-07513-y

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fender AW, Nutter JM, Fitzgerald TL et al (2015) Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J Cell Biochem 116:2517–2527. https://doi.org/10.1002/jcb.25196

    Article  CAS  PubMed  Google Scholar 

  36. Liang N, Yang T, Huang Q et al (2022) Mechanism of cancer stemness maintenance in human liver cancer. Cell Death Dis 13:394. https://doi.org/10.1038/s41419-022-04848-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vasefifar P, Motafakkerazad R, Maleki LA et al (2022) Nanog, as a key cancer stem cell marker in tumor progression. Gene 827:146448. https://doi.org/10.1016/j.gene.2022.146448

    Article  CAS  PubMed  Google Scholar 

  38. Wang S, Jiang J, Liang X, Tang Y (2015) Links between cancer stem cells and epithelial–mesenchymal transition. Onco Targets Ther 8:2973–2980. https://doi.org/10.2147/OTT.S91863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertrand FE, Angus CW, Partis WJ, Sigounas G (2012) Developmental pathways in colon cancer: crosstalk between WNT, BMP, hedgehog and notch. Cell Cycle 11:4344–4351. https://doi.org/10.4161/cc.22134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Purow B, NOTCH INHIBITION AS A PROMISING NEW APPROACH TO CANCER THERAPY (2012) Adv Exp Med Biol 727:305–319. https://doi.org/10.1007/978-1-4614-0899-4_23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang R, Wang G, Song Y et al (2015) Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Mol Med Rep 12:2417–2424. https://doi.org/10.3892/mmr.2015.3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez JM, Miranda D, Bunout D et al (2015) Folates induce colorectal carcinoma HT29 cell line proliferation through Notch1 signaling. Nutr Cancer 67:706–711. https://doi.org/10.1080/01635581.2015.1011285

    Article  CAS  PubMed  Google Scholar 

  43. Sebestyén A, Dankó T, Sztankovics D et al (2021) The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 40:989–1033. https://doi.org/10.1007/s10555-021-10006-2

    Article  CAS  PubMed  Google Scholar 

  44. Magaway C, Kim E, Jacinto E (2019) Targeting mTOR and metabolism in Cancer: lessons and innovations. Cells 8:1584. https://doi.org/10.3390/cells8121584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krencz I, Vetlényi E, Dankó T et al (2022) Metabolic adaptation as potential target in Papillary Renal Cell Carcinomas based on their in situ metabolic characteristics. Int J Mol Sci 23:10587. https://doi.org/10.3390/ijms231810587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coleman MF, O’Flanagan CH, Pfeil AJ et al (2021) Metabolic response of Triple-negative breast Cancer to Folate Restriction. Nutrients 13:1637. https://doi.org/10.3390/nu13051637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen W-J, Huang R-FS (2018) Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers. J Nutr Biochem 53:28–38. https://doi.org/10.1016/j.jnutbio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  48. Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion. https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.6b00188. Accessed 21 Jul 2023

  49. Landor SK-J, Mutvei AP, Mamaeva V et al (2011) Hypo- and hyperactivated notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci USA 108:18814–18819. https://doi.org/10.1073/pnas.1104943108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto N, Ueda-Wakagi M, Sato T et al (2015) Measurement of glucose uptake in cultured cells. Curr Protocols Pharmacol 71. 12.14.1-12.14.26

  52. Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer–role of notch signalling. Stem Cell Rev 3:169–175

    Article  CAS  PubMed  Google Scholar 

  53. Zhdanovskaya N, Firrincieli M, Lazzari S et al (2021) Targeting notch to maximize chemotherapeutic benefits: Rationale, Advanced Strategies, and future perspectives. Cancers (Basel) 13:5106. https://doi.org/10.3390/cancers13205106

    Article  CAS  PubMed  Google Scholar 

  54. Keyes MK, Jang H, Mason JB et al (2007) Older Age and Dietary Folate are determinants of genomic and p16-Specific DNA methylation in mouse Colon. J Nutr 137:1713–1717. https://doi.org/10.1093/jn/137.7.1713

    Article  CAS  PubMed  Google Scholar 

  55. Williams EA (2012) Folate, colorectal cancer and the involvement of DNA methylation. Proc Nutr Soc 71:592–597. https://doi.org/10.1017/S0029665112000717

  56. Pieroth R, Paver S, Day S, Lammersfeld C (2018) Folate and its impact on Cancer Risk. Curr Nutr Rep 7:70–84. https://doi.org/10.1007/s13668-018-0237-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cravo ML, Mason JB, Dayal Y et al (1992) Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res 52:5002–5006

    CAS  PubMed  Google Scholar 

  58. Kim Y-I (2003) Role of folate in Colon Cancer Development and Progression. J Nutr 133. https://doi.org/10.1093/jn/133.11.3731S. :3731S-3739S

  59. Hubner RA, Houlston RS (2009) Folate and colorectal cancer prevention. Br J Cancer 100:233–239. https://doi.org/10.1038/sj.bjc.6604823

    Article  CAS  PubMed  Google Scholar 

  60. Rosati R, Ma H, Cabelof DC (2012) Folate and Colorectal Cancer in rodents: a Model of DNA Repair Deficiency. J Oncol 2012:105949. https://doi.org/10.1155/2012/105949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song J, Medline A, Mason JB et al (2000) Effects of Dietary Folate on Intestinal Tumorigenesis in the ApcMin Mouse1. Cancer Res 60:5434–5440

    CAS  PubMed  Google Scholar 

  62. Ventrella-Lucente LF, Unnikrishnan A, Pilling AB et al (2010) Folate Deficiency provides protection against Colon carcinogenesis in DNA polymerase β haploinsufficient mice *. J Biol Chem 285:19246–19258. https://doi.org/10.1074/jbc.M109.069807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oliai Araghi S, Kiefte-de Jong JC, van Dijk SC et al (2019) Folic acid and vitamin B12 supplementation and the risk of Cancer: long-term follow-up of the B vitamins for the Prevention of osteoporotic fractures (B-PROOF) trial. Cancer Epidemiol Biomarkers Prev 28:275–282. https://doi.org/10.1158/1055-9965.EPI-17-1198

    Article  PubMed  Google Scholar 

  64. Feng H-C, Lin J-Y, Hsu S-H et al (2017) Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers. Int J Cancer 141:2537–2550. https://doi.org/10.1002/ijc.31008

    Article  CAS  PubMed  Google Scholar 

  65. Kang JH, Lee S-H, Lee J-S et al (2016) Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 7:49397–49410. https://doi.org/10.18632/oncotarget.10354

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim S-E (2020) Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr Res Pract 14:95. https://doi.org/10.4162/nrp.2020.14.2.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koseki J, Konno M, Asai A et al (2018) Enzymes of the one-carbon folate metabolism as anticancer targets predicted by survival rate analysis. Sci Rep 8:303. https://doi.org/10.1038/s41598-017-18456-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu Z, Leung GKK (2020) More than a metabolic enzyme: MTHFD2 as a Novel Target for Anticancer Therapy? https://doi.org/10.3389/fonc.2020.00658. Front Oncol 10:

  69. Guéant J-L, Oussalah A, Zgheib R et al (2020) Genetic, epigenetic and genomic mechanisms of methionine dependency of cancer and tumor-initiating cells: what could we learn from folate and methionine cycles. Biochimie 173:123–128. https://doi.org/10.1016/j.biochi.2020.03.015

    Article  CAS  PubMed  Google Scholar 

  70. Dekhne AS, Ning C, Nayeen MJ et al (2020) Cellular Pharmacodynamics of a Novel Pyrrolo[3,2- d ]pyrimidine inhibitor targeting mitochondrial and cytosolic one-Carbon Metabolism. Mol Pharmacol 97:9–22. https://doi.org/10.1124/mol.119.117937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cho RC, Cole PD, Sohn K-J et al (2007) Effects of folate and folylpolyglutamyl synthase modulation on chemosensitivity of breast cancer cells. Mol Cancer Ther 6:2909–2920. https://doi.org/10.1158/1535-7163.MCT-07-0449

    Article  CAS  PubMed  Google Scholar 

  72. Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for Cancer Therapy. Cell Chem Biology 24:1161–1180. https://doi.org/10.1016/j.chembiol.2017.08.028

    Article  CAS  Google Scholar 

  73. Stine ZE, Schug ZT, Salvino JM, Dang CV (2022) Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21:141–162. https://doi.org/10.1038/s41573-021-00339-6

    Article  CAS  PubMed  Google Scholar 

  74. Potente M, Gerhardt H, Carmeliet P (2011) Basic and Therapeutic aspects of Angiogenesis. Cell 146:873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  75. Melone MAB, Valentino A, Margarucci S et al (2018) The carnitine system and cancer metabolic plasticity. Cell Death Dis 9:228. https://doi.org/10.1038/s41419-018-0313-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Campbell SL, Wellen KE (2018) Metabolic signaling to the Nucleus in Cancer. Mol Cell 71:398–408. https://doi.org/10.1016/j.molcel.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  77. Barbosa AM, Martel F (2020) Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 12:. https://doi.org/10.3390/cancers12010154

  78. Pajak B, Siwiak E, Sołtyka M et al (2019) 2-Deoxy-d-Glucose and its analogs: from Diagnostic to Therapeutic agents. Int J Mol Sci 21. https://doi.org/10.3390/ijms21010234

  79. Cassim S, Pouyssegur J (2019) Tumor Microenvironment: a metabolic player that shapes the Immune response. Int J Mol Sci 21. https://doi.org/10.3390/ijms21010157

  80. Ogier-Denis E, Bauvy C, Aubery M et al (1989) Processing of asparagine-linked oligosaccharides is an early biochemical marker of the enterocytic differentiation of HT-29 cells. J Cell Biochem 41:13–23. https://doi.org/10.1002/jcb.240410103

    Article  CAS  PubMed  Google Scholar 

  81. Park WH, Han YW, Kim SH, Kim SZ (2007) An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. J Cell Biochem 102:98–109. https://doi.org/10.1002/jcb.21280

    Article  CAS  PubMed  Google Scholar 

  82. Han YH, Kim SH, Kim SZ, Park WH (2009) Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death. Mol Med Rep 2:307–311. https://doi.org/10.3892/mmr_00000101

    Article  CAS  PubMed  Google Scholar 

  83. Fan J, Ye J, Kamphorst JJ et al (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302. https://doi.org/10.1038/nature13236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng Y, Cantley LC (2019) Toward a better understanding of folate metabolism in health and disease. J Exp Med 216:253–266. https://doi.org/10.1084/jem.20181965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang L, Garcia Canaveras JC, Chen Z et al (2020) Serine catabolism feeds NADH when respiration is impaired. Cell Metabol 31:809–821e6. https://doi.org/10.1016/j.cmet.2020.02.017

    Article  CAS  Google Scholar 

  86. Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Experimental Clin Cancer Res 34:111. https://doi.org/10.1186/s13046-015-0221-y

    Article  CAS  Google Scholar 

  87. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800. https://doi.org/10.1016/j.molcel.2017.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu X, Jiang J, Yao L, Ji B (2018) Silencing the FOLR2 gene inhibits cell proliferation and increases apoptosis in the NCI-H1650 Non-small Cell Lung Cancer Cell line via inhibition of AKT/Mammalian target of Rapamycin (mTOR)/Ribosomal protein S6 kinase 1 (S6K1) signaling. Med Sci Monit 24:8064–8073. https://doi.org/10.12659/MSM.911384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Silva E, Rosario FJ, Powell TL, Jansson T (2017) Mechanistic target of rapamycin is a novel molecular mechanism linking folate availability and cell function. J Nutr 147:1237–1242. https://doi.org/10.3945/jn.117.248823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takebe N, Nguyen D, Yang SX (2014) Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 141:140–149. https://doi.org/10.1016/j.pharmthera.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  91. Medina MA, Oza G, Sharma A et al (2020) Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. International Journal of Environmental Research and Public Health 17:2078. https://doi.org/10.3390/ijerph17062078

  92. Pajvani UB, Qiang L, Kangsamaksin T et al (2013) Inhibition of Notch uncouples akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat Med 19:1054–1060. https://doi.org/10.1038/nm.3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu J, Chi F, Guo T et al (2015) NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest 125:1579–1590. https://doi.org/10.1172/JCI76468

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li Y, Sun R, Zou J et al (2019) Dual roles of the AMP-Activated protein kinase pathway in Angiogenesis. Cells 8:752. https://doi.org/10.3390/cells8070752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lennicke C, Cochemé HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81:3691–3707. https://doi.org/10.1016/j.molcel.2021.08.018

    Article  CAS  PubMed  Google Scholar 

  96. Zhao Y, Hu X, Liu Y et al (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16:79. https://doi.org/10.1186/s12943-017-0648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pannuti A, Foreman K, Rizzo P et al (2010) Targeting notch to target cancer stem cells. Clin Cancer Res 16:3141–3152. https://doi.org/10.1158/1078-0432.CCR-09-2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Juan Rodríguez Silva was supported by Proyecto SOCHINUT-Tetra Pak 2016 and CONICYT Ph. D scholarship N° 21160444. Rodrigo Troncoso was supported by Proyecto Vicerrectoría de Investigación y Desarrollo (VID) de la Universidad de Chile, ENL01/23.

Author information

Authors and Affiliations

Authors

Contributions

JRS conceived the study, performed experiments, analyzed the data and wrote the manuscript. MM-A performed experiments and wrote the manuscript. CS analyzed the data and wrote the manuscript. CD-B performed experiments. RT conceived the study, analyzed the data and wrote the manuscript. SH conceived the study, performed experiments, analyzed the data and wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Juan Rodríguez Silva or Sandra Hirsch.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Silva, J., Monsalves-Álvarez, M., Sepúlveda, C. et al. Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04987-1

Keywords

Navigation