Skip to main content

Advertisement

Log in

ULBP2 is a biomarker related to prognosis and immunity in colon cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The study aimed to determine whether ULBP2 was associated with prognosis and immune infiltration in colon cancer (CC) and provided important molecular basis in order to early non-invasive diagnosis and immunotherapy of CC. Using The Cancer Genome Atlas database (TCGA) and ImmPort database, we extracted messenger RNA (mRNA) data of CC and immune-related genes, then we used “limma” package, “survival” package, and Venn overlap analysis to obtain the differentially expressed mRNA (DEmRNA) associated with prognosis and immunity of CC patients. “pROC” package was used to analyze receiver operating characteristics (ROC) of target gene. We used chi-square test and two-class logistics model to identify clinicopathological parameters that correlated with target gene expression. In order to determine the effects of target gene expression and clinicopathological parameters on survival, univariate and multivariate cox regression analyses were performed. We analyzed the related functions and signaling pathways of target gene by enrichment analysis. Finally, the correlation between target gene and tumor immune infiltrating was explored by ssGSEA and spearman correlation analysis. Results showed that ULBP2 was a target gene associated with immunity and prognosis in CC patients. CC patients with higher ULBP2 expression had poor outcomes. In terms of ROC, ULBP2 had an area under the curve (AUC) of 0.984. ULBP2 was associated with T stage, N stage, and pathologic stage of CC patients, and served as an independent predictor of overall survival in CC patients. Functional enrichment analysis revealed ULBP2 was obviously enriched in pathways connected with carcinogenesis and immunosuppression. The expression of ULBP2 was significantly associated with tumor immune cells and immune checkpoints according to ssGSEA and spearman correlation analysis. To conclude, our study suggested that ULBP2 was associated with tumor immunity, and might be a biomarker associated with the diagnosis and prognosis of CC patients, and a potential target of CC immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

For more information, please see https://portal.gdc.cancer.gov/cart.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A et al (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70:145–164

    Article  PubMed  Google Scholar 

  3. Wu H, Qin W, Lu S et al (2020) Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2’-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer 19:95

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Zhang H, Shen B, Sun X-F (2019) Chromogranin-A expression as a novel biomarker for early diagnosis of colon cancer patients. Int J Mol Sci 20(12):2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856

    Article  CAS  PubMed  Google Scholar 

  6. Du W, Yang X, He S et al (2021) Novel hyaluronic acid oligosaccharide-loaded and CD44v6-targeting oxaliplatin nanoparticles for the treatment of colorectal cancer. Drug Deliv 28:920–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu X, Yang H, Chen X et al (2021) Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. Biomaterials 269:120654

    Article  CAS  PubMed  Google Scholar 

  8. Ding D, Zhong H, Liang R et al (2021) Multifunctional nanodrug Mediates synergistic photodynamic therapy and MDSCs-targeting immunotherapy of colon cancer. Adv Sci (Weinh) 8:e2100712

    Article  PubMed  Google Scholar 

  9. Xiao R, Wang S, Guo J et al (2022) Ferroptosis-related gene NOX4, CHAC1 and HIF1A are valid biomarkers for stomach adenocarcinoma. J Cell Mol Med 26:1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Radosavljevic M, Cuillerier B, Wilson MJ et al (2002) A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3. Genomics 79:114–23

    Article  CAS  PubMed  Google Scholar 

  11. Duan S, Guo W, Xu Z et al (2019) Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 18:29

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cosman D, Müllberg J, Sutherland CL et al (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    Article  CAS  PubMed  Google Scholar 

  13. Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235:267–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kegasawa T, Tatsumi T, Yoshioka T et al (2019) Soluble UL16-binding protein 2 is associated with a poor prognosis in pancreatic cancer patients. Biochem Biophys Res Commun 517:84–88

    Article  CAS  PubMed  Google Scholar 

  15. Jinushi M, Takehara T, Tatsumi T et al (2003) Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104:354–361

    Article  CAS  PubMed  Google Scholar 

  16. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  CAS  PubMed  Google Scholar 

  17. Song H, Kim J, Cosman D, Choi I (2006) Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol 239:22–30

    Article  CAS  PubMed  Google Scholar 

  18. Demirkol S, Gomceli I, Isbilen M et al (2017) A combined ULBP2 and SEMA5A expression signature as a prognostic and predictive biomarker for colon cancer. J Cancer 8:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Z, Fu P, Yu Z et al (2019) Comprehensive analysis of lncRNA-miRNA- mRNA network ascertains prognostic factors in patients with colon cancer. Technol Cancer Res Treat 18:1533033819853237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Zhu X-X, Xu H et al (2016) Expression and prognostic significance of unique ULBPs in pancreatic cancer. Onco Targets Ther 9:5271–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tippmann S (2015) Programming tools: adventures with R. Nature 517:109–110

    Article  CAS  PubMed  Google Scholar 

  24. Postma M, Goedhart J (2019) PlotsOfData-A web app for visualizing data together with their summaries. PLoS Biol 17:e3000202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou R-S, Zhang E-X, Sun Q-F et al (2019) Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer 19:779

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dai Y, Qiang W, Lin K et al (2021) An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma. Cancer Immunol Immunother 70:967–979

    Article  CAS  PubMed  Google Scholar 

  27. Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77

    Article  PubMed  PubMed Central  Google Scholar 

  28. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang Y, Huang S, Han L et al (2021) Comprehensive analysis of peritoneal metastasis sequencing data to identify LINC00924 as a prognostic biomarker in gastric cancer. Cancer Manag Res 13:5599–5611

    Article  PubMed  PubMed Central  Google Scholar 

  32. Georgieva M, Gospodinova Z, Keremidarska-Markova M et al (2021) PEGylated nanographene oxide in combination with near-infrared laser irradiation as a smart nanocarrier in colon cancer targeted therapy. Pharmaceutics 13(3):424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopes N, McIntyre C, Martin S et al (2021) Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat Immunol 22:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Camidge DR, Doebele RC, Kerr KM (2019) Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol 16:341–355

    Article  CAS  PubMed  Google Scholar 

  35. Li K, Mandai M, Hamanishi J et al (2009) Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis. Cancer Immunol Immunother 58:641–652

    Article  CAS  PubMed  Google Scholar 

  36. Zhang N, Ng AS, Cai S et al (2021) Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol 22:e358–e368

    Article  CAS  PubMed  Google Scholar 

  37. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adamis AP, Shima DT (2005) The role of vascular endothelial growth factor in ocular health and disease. Retina 25:111–118

    Article  PubMed  Google Scholar 

  39. Semenza GL (2000) HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev 19:59–65

    Article  CAS  PubMed  Google Scholar 

  40. Ferrara N (2009) VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20:158–163

    Article  CAS  PubMed  Google Scholar 

  41. Waldner MJ, Wirtz S, Jefremow A et al (2010) VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J Exp Med 207:2855–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scaldaferri F, Vetrano S, Sans M et al (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136(2):585–595

    Article  CAS  PubMed  Google Scholar 

  43. Yoo S-A, Kwok S-K, Kim W-U (2008) Proinflammatory role of vascular endothelial growth factor in the pathogenesis of rheumatoid arthritis: prospects for therapeutic intervention. Mediators Inflamm 2008:129873

    Article  PubMed  Google Scholar 

  44. Gabrilovich DI, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  CAS  PubMed  Google Scholar 

  45. Hegde PS, Wallin JJ, Mancao C (2018) Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol 52:117–124

    Article  CAS  PubMed  Google Scholar 

  46. Cha J-H, Chan L-C, Li C-W et al (2019) Mechanisms controlling PD-L1 expression in cancer. Mol Cell 76:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelly PN (2018) The cancer immunotherapy revolution. Science 359:1344–1345

    Article  CAS  PubMed  Google Scholar 

  48. Allen E, Jabouille A, Rivera LB et al (2017) Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 9(385):eaak9679

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walter M, Liang S, Ghosh S et al (2009) Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28:2745–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoon S, Woo SU, Kang JH et al (2012) NF-κB and STAT3 cooperatively induce IL6 in starved cancer cells. Oncogene 31:3467–3481

    Article  CAS  PubMed  Google Scholar 

  51. Chang Q, Bournazou E, Sansone P et al (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15:848–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bournazou E, Bromberg J (2013) Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2:e23828

    PubMed  PubMed Central  Google Scholar 

  53. Yu H, Jove R (2004) The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 4(2):97–105

    Article  CAS  PubMed  Google Scholar 

  54. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kortylewski M, Kujawski M, Wang T et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the TCGA database, and ImmPort database for data acquisition, and Cuiying Biomedical Research Center for their support of our laboratory equipment and laboratory technology.

Funding

The National Natural Science Foundation of China [Grant number 81770525]; Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital [grant number CY2021-QN-A05]; Natural Science Foundation of Gansu Province [22JR5RA969]; Cuiying Scientific and Technological Key Cultivation Program of Lanzhou University Second Hospital [grant number CY2018-ZD01]; Lanzhou Science and technology project [grant number 2022-ZD-104].

Author information

Authors and Affiliations

Authors

Contributions

The original study design was undertaken by DZ and YY. Software and database were performed by XY, XS, and ZRW. Data were analyzed by XY and ZPW. The manuscript was written by XY.

Corresponding author

Correspondence to Dekui Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 649 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Su, X., Wang, Z. et al. ULBP2 is a biomarker related to prognosis and immunity in colon cancer. Mol Cell Biochem 478, 2207–2219 (2023). https://doi.org/10.1007/s11010-022-04647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04647-2

Keywords

Navigation