Skip to main content
Log in

PU.1 inhibition does not attenuate cardiac function deterioration or fibrosis in a murine model of myocardial infarction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Activated cardiac fibroblasts are involved in both reparative wound healing and maladaptive cardiac fibrosis after myocardial infarction (MI). Recent evidence suggests that PU.1 inhibition can enable reprogramming of profibrotic fibroblasts to quiescent fibroblasts, leading to attenuation of pathologic fibrosis in several fibrosis models. The role of PU.1 in acute MI has not been tested. We designed a randomized, blinded study to evaluate whether DB1976, a PU.1 inhibitor, attenuates cardiac function deterioration and fibrosis in a murine model of MI. A total of 44 Ai9 periostin-Cre transgenic mice were subjected to 60 min of coronary occlusion followed by reperfusion. At 7 days after MI, 37 mice were randomly assigned to control (vehicle) or DB1976 treatment and followed for 2 weeks. Left ventricular ejection fraction (EF), assessed by echocardiography, did not differ between the two groups before or after treatment (final EF, 33.3 ± 1.0% in control group and 31.2 ± 1.3% in DB1976 group). Subgroup analysis of female and male mice showed the same results. There were no differences in cardiac scar (trichrome stain) and fibrosis (interstitial/perivascular collagen; picrosirius stain) between groups. Results from the per-protocol dataset (including mice with pre-treatment EF < 35% only) were consistent with the full dataset. In conclusion, this randomized, blinded study demonstrates that DB1976, a PU.1 inhibitor, does not attenuate cardiac functional deterioration or cardiac fibrosis in a mouse model of MI caused by coronary occlusion/reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and material are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

ECG:

Electrocardiography

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

I/R:

Ischemia/reperfusion

LV:

Left ventricle

MI:

Myocardial infarction

SV:

Stroke volume

References

  1. Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14:484–491. https://doi.org/10.1038/nrcardio.2017.57

    Article  PubMed  PubMed Central  Google Scholar 

  2. Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA (2020) Cells of the adult human heart. Nature 588:466–472. https://doi.org/10.1038/s41586-020-2797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Villalobos E, Criollo A, Schiattarella GG, Altamirano F, French KM, May HI, Jiang N, Nguyen NUN, Romero D, Roa JC, Garcia L, Diaz-Araya G, Morselli E, Ferdous A, Conway SJ, Sadek HA, Gillette TG, Lavandero S, Hill JA (2019) Fibroblast primary cilia are required for cardiac fibrosis. Circulation 139:2342–2357. https://doi.org/10.1161/CIRCULATIONAHA.117.028752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kong P, Shinde AV, Su Y, Russo I, Chen B, Saxena A, Conway SJ, Graff JM, Frangogiannis NG (2018) Opposing actions of fibroblast and cardiomyocyte Smad3 signaling in the infarcted myocardium. Circulation 137:707–724. https://doi.org/10.1161/CIRCULATIONAHA.117.029622

    Article  CAS  PubMed  Google Scholar 

  5. Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, J Lin SC, Aronow BJ, Tallquist MD, Molkentin JD (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7:12260. https://doi.org/10.1038/ncomms12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gourdie RG, Dimmeler S, Kohl P (2016) Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 15:620–638. https://doi.org/10.1038/nrd.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaur H, Takefuji M, Ngai CY, Carvalho J, Bayer J, Wietelmann A, Poetsch A, Hoelper S, Conway SJ, Mollmann H, Looso M, Troidl C, Offermanns S, Wettschureck N (2016) Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice. Circ Res 118:1906–1917. https://doi.org/10.1161/CIRCRESAHA.116.308643

    Article  CAS  PubMed  Google Scholar 

  8. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120:254–265. https://doi.org/10.1172/JCI40295

    Article  CAS  PubMed  Google Scholar 

  9. Wohlfahrt T, Rauber S, Uebe S, Luber M, Soare A, Ekici A, Weber S, Matei AE, Chen CW, Maier C, Karouzakis E, Kiener HP, Pachera E, Dees C, Beyer C, Daniel C, Gelse K, Kremer AE, Naschberger E, Sturzl M, Butter F, Sticherling M, Finotto S, Kreuter A, Kaplan MH, Jungel A, Gay S, Nutt SL, Boykin DW, Poon GMK, Distler O, Schett G, Distler JHW, Ramming A (2019) PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566:344–349. https://doi.org/10.1038/s41586-019-0896-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu J, Zhang JJ, Li L, Wang SL, Yang HT, Fan XW, Zhang LM, Hu GL, Fu HX, Song WF, Yan LJ, Liu JJ, Wu JT, Kong B (2021) PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II by reducing TGF-beta1/Smads pathway activation. J Cell Mol Med 25:6746–6759. https://doi.org/10.1111/jcmm.16678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102:752–760. https://doi.org/10.1161/CIRCRESAHA.107.159517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taniyama Y, Katsuragi N, Sanada F, Azuma J, Iekushi K, Koibuchi N, Okayama K, Ikeda-Iwabu Y, Muratsu J, Otsu R, Rakugi H, Morishita R (2016) Selective blockade of Periostin Exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension 67:356–361. https://doi.org/10.1161/HYPERTENSIONAHA.115.06265

    Article  CAS  PubMed  Google Scholar 

  13. Furtado MB, Nim HT, Boyd SE, Rosenthal NA (2016) View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143:387–397. https://doi.org/10.1242/dev.120576

    Article  CAS  PubMed  Google Scholar 

  14. Jung RG, Stotts C, Makwana D, Motazedian P, Di Santo P, Goh CY, Verreault-Julien L, Simard T, Ramirez FD, Hibbert B (2021) Methodological rigor in preclinical cardiovascular research: contemporary performance of AHA Scientific Publications. Circ Res 129:887–889. https://doi.org/10.1161/CIRCRESAHA.121.319921

    Article  CAS  PubMed  Google Scholar 

  15. Bolli R (2021) CAESAR’s legacy: a new era of rigor in preclinical studies of cardioprotection. Basic Res Cardiol 116:33. https://doi.org/10.1007/s00395-021-00874-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jones SP, Tang XL, Guo Y, Steenbergen C, Lefer DJ, Kukreja RC, Kong M, Li Q, Bhushan S, Zhu X, Du J, Nong Y, Stowers HL, Kondo K, Hunt GN, Goodchild TT, Orr A, Chang CC, Ockaili R, Salloum FN, Bolli R (2015) The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res 116:572–586. https://doi.org/10.1161/CIRCRESAHA.116.305462

    Article  CAS  PubMed  Google Scholar 

  17. Lefer DJ, Bolli R (2011) Development of an NIH consortium for preclinicAl AssESsment of CARdioprotective therapies (CAESAR): a paradigm shift in studies of infarct size limitation. J Cardiovasc Pharmacol Ther 16:332–339. https://doi.org/10.1177/1074248411414155

    Article  PubMed  Google Scholar 

  18. Bolli R (2019) Paul Simpson and scientific Rigor. Circ Res 124:194. https://doi.org/10.1161/CIRCRESAHA.118.314621

    Article  CAS  PubMed  Google Scholar 

  19. Bolli R (2017) New initiatives to improve the rigor and reproducibility of articles published in circulation research. Circ Res 121:472–479. https://doi.org/10.1161/CIRCRESAHA.117.311678

    Article  CAS  PubMed  Google Scholar 

  20. Bolli R (2015) Reflections on the irreproducibility of scientific papers. Circ Res 117:665–666. https://doi.org/10.1161/CIRCRESAHA.115.307496

    Article  CAS  PubMed  Google Scholar 

  21. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–34. https://doi.org/10.1161/01.RES.0000137171.97172.d7

    Article  CAS  PubMed  Google Scholar 

  22. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nong Y, Guo Y, Gumpert A, Li Q, Tomlin A, Zhu X, Bolli R (2021) Single dose of synthetic microRNA-199a or microRNA-149 mimic does not improve cardiac function in a murine model of myocardial infarction. Mol Cell Biochem 476:4093–4106. https://doi.org/10.1007/s11010-021-04227-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Q, Guo Y, Nong Y, Tomlin A, Gumpert A, Zhu X, Hassan SA, Bolli R (2021) Comparison of repeated doses of c-kit-positive cardiac cells versus a single equivalent combined dose in a murine model of chronic ischemic cardiomyopathy. Int J Mol Sci. https://doi.org/10.3390/ijms22063145

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo Y, Nong Y, Li Q, Tomlin A, Kahlon A, Gumpert A, Slezak J, Zhu X, Bolli R (2021) Comparison of one and three intraventricular injections of cardiac progenitor cells in a murine model of chronic ischemic cardiomyopathy. Stem Cell Rev Rep 17:604–615. https://doi.org/10.1007/s12015-020-10063-0

    Article  CAS  PubMed  Google Scholar 

  26. Audam TN, Nong Y, Tomlin A, Jurkovic A, Li H, Zhu X, Long BW, Zheng YW, Weirick T, Brittian KR, Riggs DW, Gumpert A, Uchida S, Guo Y, Wysoczynski M, Jones SP (2020) Cardiac mesenchymal cells from failing and nonfailing hearts limit ventricular dilation when administered late after infarction. Am J Physiol Heart Circ Physiol 319:H109–H122. https://doi.org/10.1152/ajpheart.00114.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wysoczynski M, Guo Y, Moore JBt, Muthusamy S, Li Q, Nasr M, Li H, Nong Y, Wu W, Tomlin AA, Zhu X, Hunt G, Gumpert AM, Book MJ, Khan A, Tang XL, Bolli R (2017) Myocardial reparative properties of cardiac mesenchymal cells isolated on the basis of adherence. J Am Coll Cardiol 69:1824–1838. https://doi.org/10.1016/j.jacc.2017.01.048

    Article  PubMed  PubMed Central  Google Scholar 

  28. Antony-Debre I, Paul A, Leite J, Mitchell K, Kim HM, Carvajal LA, Todorova TI, Huang K, Kumar A, Farahat AA, Bartholdy B, Narayanagari SR, Chen J, Ambesi-Impiombato A, Ferrando AA, Mantzaris I, Gavathiotis E, Verma A, Will B, Boykin DW, Wilson WD, Poon GM, Steidl U (2017) Pharmacological inhibition of the transcription factor PU.1 in leukemia. J Clin Invest 127:4297–4313. https://doi.org/10.1172/JCI92504

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG (2018) Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 113:46. https://doi.org/10.1007/s00395-018-0703-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo Y, Wysoczynski M, Nong Y, Tomlin A, Zhu X, Gumpert AM, Nasr M, Muthusamy S, Li H, Book M, Khan A, Hong KU, Li Q, Bolli R (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18. https://doi.org/10.1007/s00395-017-0606-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cai C, Guo Y, Teng L, Nong Y, Tan M, Book MJ, Zhu X, Wang XL, Du J, Wu WJ, Xie W, Hong KU, Li Q, Bolli R (2015) Preconditioning human cardiac stem cells with an HO-1 inducer exerts beneficial effects after cell transplantation in the infarcted murine heart. Stem Cells 33:3596–3607. https://doi.org/10.1002/stem.2198

    Article  CAS  PubMed  Google Scholar 

  32. Guo Y, Tukaye DN, Wu WJ, Zhu X, Book M, Tan W, Jones SP, Rokosh G, Narumiya S, Li Q, Bolli R (2012) The COX-2/PGI2 receptor axis plays an obligatory role in mediating the cardioprotection conferred by the late phase of ischemic preconditioning. PLoS ONE 7:e41178. https://doi.org/10.1371/journal.pone.0041178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo Y, Flaherty MP, Wu WJ, Tan W, Zhu X, Li Q, Bolli R (2012) Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Res Cardiol 107:288. https://doi.org/10.1007/s00395-012-0288-y

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R (1998) Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:H1375–H1387

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo Y, Nong Y, Li Q, Tomlin A, Kahlon A, Gumpert A, Slezak J, Zhu X, Bolli R (2020) Comparison of one and three intraventricular injections of cardiac progenitor cells in a murine model of chronic ischemic cardiomyopathy. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-020-10063-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nong Y, Guo Y, Tomlin A, Zhu X, Wysoczynski M, Li Q, Bolli R (2021) Echocardiography-guided percutaneous left ventricular intracavitary injection as a cell delivery approach in infarcted mice. Mol Cell Biochem 476:2135–2148. https://doi.org/10.1007/s11010-021-04077-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong KU, Guo Y, Li QH, Cao P, Al-Maqtari T, Vajravelu BN, Du J, Book MJ, Zhu X, Nong Y, Bhatnagar A, Bolli R (2014) c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE 9:e96725. https://doi.org/10.1371/journal.pone.0096725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, Bolli R (2013) A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol 108:346. https://doi.org/10.1007/s00395-013-0346-0

    Article  PubMed  PubMed Central  Google Scholar 

  39. Triana JF, Li XY, Jamaluddin U, Thornby JI, Bolli R (1991) Postischemic myocardial “stunning”. Identification of major differences between the open-chest and the conscious dog and evaluation of the oxygen radical hypothesis in the conscious dog. Circ Res 69:731–747. https://doi.org/10.1161/01.res.69.3.731

    Article  CAS  PubMed  Google Scholar 

  40. Ping P, Zhang J, Huang S, Cao X, Tang XL, Li RC, Zheng YT, Qiu Y, Clerk A, Sugden P, Han J, Bolli R (1999) PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. Am J Physiol 277:H1771–H1785. https://doi.org/10.1152/ajpheart.1999.277.5.H1771

    Article  CAS  PubMed  Google Scholar 

  41. Li XY, McCay PB, Zughaib M, Jeroudi MO, Triana JF, Bolli R (1993) Demonstration of free radical generation in the “stunned” myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. J Clin Invest 92:1025–1041. https://doi.org/10.1172/JCI116608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/bf03193146

    Article  PubMed  Google Scholar 

  43. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le Bras A (2018) Dynamics of fibroblast activation in the infarcted heart. Nat Rev Cardiol 15:379. https://doi.org/10.1038/s41569-018-0025-9

    Article  PubMed  Google Scholar 

  45. Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 128:2127–2143. https://doi.org/10.1172/JCI98215

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gaskill BN, Garner JP (2020) Power to the people: power, negative results and sample size. J Am Assoc Lab Anim Sci 59:9–16. https://doi.org/10.30802/AALAS-JAALAS-19-000042

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wysoczynski M, Khan A, Bolli R (2018) New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res 123:138–158. https://doi.org/10.1161/CIRCRESAHA.118.313251

    Article  CAS  PubMed  Google Scholar 

  48. Colucci F, Samson SI, DeKoter RP, Lantz O, Singh H, Di Santo JP (2001) Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97:2625–2632. https://doi.org/10.1182/blood.v97.9.2625

    Article  CAS  PubMed  Google Scholar 

  49. Wan X, Chowdhury IH, Jie Z, Choudhuri S, Garg NJ (2019) Origin of monocytes/macrophages contributing to chronic inflammation in chagas disease: SIRT1 inhibition of FAK-NFkappaB-dependent proliferation and proinflammatory activation of macrophages. Cells. https://doi.org/10.3390/cells9010080

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health Grants P01 HL078825 (RB).We thank Dr. Tamer Mohamed for providing animals and materials and input into protocol design.

Funding

This work was supported in part by National Institutes of Health grants P01 HL078825 (RB).

Author information

Authors and Affiliations

Authors

Contributions

RB: designed the experiments, supervised the study, and revised the manuscript. YN: performed the experiments, analyzed data, and wrote the manuscript. YG: performed the experiments, analyzed the data, and supervised data analysis. QO, AG, AT, and XZ: performed experiments and analyzed data.

Corresponding author

Correspondence to Roberto Bolli.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

All of the authors have approved that the submitted works are original and the paper has not been published and is not being considered for publication elsewhere.

Research involving human and animal rights

All animal procedures were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the University of Louisville Institutional Animal Care and Use Committee (protocol number: 14034).

Consent to participate

Not Applicable.

Consent for publication

All of the authors have approved the final version of this manuscript and have consented to the submission of this manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, Y., Guo, Y., Ou, Q. et al. PU.1 inhibition does not attenuate cardiac function deterioration or fibrosis in a murine model of myocardial infarction. Mol Cell Biochem 478, 927–937 (2023). https://doi.org/10.1007/s11010-022-04561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04561-7

Keywords

Navigation