Skip to main content

Advertisement

Log in

Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In order to determine whether the myocardial response to ischemia/reperfusion (I/R) injury varies depending on genetic background, gender, age, body temperature, and arterial blood pH, we studied 1,074 mice from 19 strains (including 129S6/SvEvTac (129S6), B6/129P2-Ptgs2tm1Unc, B6/129SvF2/J, B6/129/D2, B6/CBAF1, B6/DBA/1JNcr, BALB/c, BPH2/J, C57BL/6/J (B6/J), C3H/DBA, C3H/FB/FF, C3H/HeJ-Pde6brd1, FVB/N/J [FVB/N], FVB/B6, FVB/ICR and Crl:ICR/H [ICR]) and distributed them into 69 groups depending on strain and: (1) two phases of ischemic preconditioning (PC); (2) coronary artery occlusion (O) time; (3) gender; (4) age; (5) blood transfusion; (6) core body temperature; and (7) arterial blood pH. Mice underwent O either without (non-preconditioned [naive]) or with prior cyclic O/reperfusion (R) (PC stimulus) consisting of six 4-min O/4-min R cycles 10 min (early PC, EPC) or 24 h (late PC, LPC) prior to 30 or 45-min O and 24 h R. In B6/J and B6/129/D2 mice, almost the entire risk region was infarcted after a 60-min O. Of the naive mouse hearts, B6/ecSODWT and FVB/N mice had infarct sizes significantly smaller than those of the other mice. All strains except FVB/N benefited from the cardioprotection afforded by the early phase of PC; in contrast, development of LPC was inconsistent amongst groups and was strain-dependent. Female gender (1) was associated with reduced infarct size in ICR mice, (2) determined whether LPC developed in ICR mice, and (3) limited the protection afforded by EPC in 129S6 mice. Importantly, mild hypothermia (1 °C decrease in core temperature) and mild acidosis (0.18 decrease in blood pH) resulted in a striking cardioprotective effect in ICR mice: 67.5 and 43.0 % decrease in infarct size, respectively. Replacing blood losses with crystalloid fluids (instead of blood) during surgery also reduced infarct size. To our knowledge, this is the largest analysis of the determinants of infarct size in mice ever published. The results demonstrate that genetic background, gender, age (but not in ICR), body temperature and arterial blood pH have a major impact on infarct size, and thus need to be carefully measured and/or taken into account when designing a study of myocardial infarction in mice; failure to do so makes results uninterpretable. For example, core temperature and blood pH need to be measured, respiratory acidosis (or alkalosis) and hypothermia (or hyperthermia) must be avoided, and comparisons cannot be made between mouse strains or genders that exhibit different susceptibility to I/R injury (e.g., FVB/N male mice and ICR female mice are inherently protected against I/R injury).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdullah I, Lepore JJ, Epstein JA, Parmacek MS, Gruber PJ (2005) MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair Regen 13:205–208. doi:10.1111/j.1067-1927.2005.130212.x

    Article  PubMed  Google Scholar 

  2. Akdemir B, Kara S, Polat K, Guven A, Gunes S (2008) Ensemble adaptive network-based fuzzy inference system with weighted arithmetical mean and application to diagnosis of optic nerve disease from visual-evoked potential signals. Artif Intell Med 43:141–149. doi:10.1016/j.artmed.2008.03.007

    Article  PubMed  Google Scholar 

  3. Benjamin IJ, Guo Y, Srinivasan S, Boudina S, Taylor RP, Rajasekaran NS, Gottlieb R, Wawrousek EF, Abel ED, Bolli R (2007) CRYAB and HSPB2 deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice. Am J Physiol Heart Circ Physiol 293:H3201–H3209. doi:10.1152/ajpheart.01363.2006

    Article  PubMed  CAS  Google Scholar 

  4. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed  CAS  Google Scholar 

  5. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261. doi:10.1093/cvr/cvp033

    Article  PubMed  CAS  Google Scholar 

  6. Bolli R (2007) Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 292:H19–H27. doi:10.1152/ajpheart.00712.2006

    Article  PubMed  CAS  Google Scholar 

  7. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA, NHLBI working group on the translation of therapies for protecting the heart from ischemia (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. doi:10.1161/01.RES.0000137171.97172.d7

    Article  PubMed  CAS  Google Scholar 

  8. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    PubMed  CAS  Google Scholar 

  9. Cavasin MA, Tao ZY, Yu AL, Yang XP (2006) Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. Am J Physiol Heart Circ Physiol 290:H2043–H2050. doi:10.1152/ajpheart.01121.2005

    Article  PubMed  CAS  Google Scholar 

  10. Chien GL, Wolff RA, Davis RF, van Winkle DM (1994) “Normothermic range” temperature affects myocardial infarct size. Cardiovasc Res 28:1014–1017

    Article  PubMed  CAS  Google Scholar 

  11. Dawn B, Guo Y, Rezazadeh A, Huang Y, Stein AB, Hunt G, Tiwari S, Varma J, Gu Y, Prabhu SD, Kajstura J, Anversa P, Ildstad ST, Bolli R (2006) Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ Res 98:1098–1105. doi:10.1161/01.RES.0000218454.76784.66

    Article  PubMed  CAS  Google Scholar 

  12. Dawn B, Guo Y, Rezazadeh A, Wang OL, Stein AB, Hunt G, Varma J, Xuan YT, Wu WJ, Tan W, Zhu X, Bolli R (2004) Tumor necrosis factor-alpha does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol 37:51–61. doi:10.1016/j.yjmcc.2004.03.012

    Article  PubMed  CAS  Google Scholar 

  13. Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, Sanganalmath SK, Abdel-Latif A, Hunt G, Vincent RJ, Taher H, Reed NJ, Ratajczak MZ, Bolli R (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26:1646–1655. doi:10.1634/stemcells.2007-0715

    Article  PubMed  Google Scholar 

  14. Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, Tan W, Bolli R (2004) IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 64:61–71. doi:10.1016/j.cardiores.2004.05.011

    Article  PubMed  CAS  Google Scholar 

  15. Duncker DJ, Klassen CL, Ishibashi Y, Herrlinger SH, Pavek TJ, Bache RJ (1996) Effect of temperature on myocardial infarction in swine. Am J Physiol 270:H1189–H1199

    PubMed  CAS  Google Scholar 

  16. Flaherty MP, Guo Y, Tiwari S, Rezazadeh A, Hunt G, Sanganalmath SK, Tang XL, Bolli R, Dawn B (2008) The role of TNF-alpha receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol 45:735–741. doi:10.1016/j.yjmcc.2008.08.014

    Article  PubMed  CAS  Google Scholar 

  17. Gao XM, Xu Q, Kiriazis H, Dart AM, Du XJ (2005) Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc Res 65:469–477. doi:10.1016/j.cardiores.2004.10.014

    Article  PubMed  CAS  Google Scholar 

  18. Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181

    Article  PubMed  CAS  Google Scholar 

  19. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200

    Article  PubMed  CAS  Google Scholar 

  20. Gorog DA, Tanno M, Kabir AM, Kanaganayagam GS, Bassi R, Fisher SG, Marber MS (2003) Varying susceptibility to myocardial infarction among C57BL/6 mice of different genetic background. J Mol Cell Cardiol 35:705–708

    Article  PubMed  CAS  Google Scholar 

  21. Guo Y, Bao W, Wu WJ, Shinmura K, Tang XL, Bolli R (2000) Evidence for an essential role of cyclooxygenase-2 as a mediator of the late phase of ischemic preconditioning in mice. Basic Res Cardiol 95:479–484

    Article  PubMed  CAS  Google Scholar 

  22. Guo Y, Bao W, Wu WJ, Tang XL, Bolli R (1999) Nitric oxide donors induce late preconditioning against myocardial infarction in mice. J Mol Cell Cardiol 31:A11–A19

    Google Scholar 

  23. Guo Y, Bolli R, Bao W, Wu WJ, Black RG, Murphree SS, Salvatore CA, Jacobson MA, Auchampach JA (2001) Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J Mol Cell Cardiol 33:825–830. doi:10.1006/jmcc.2001.1338

    Article  PubMed  CAS  Google Scholar 

  24. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512

    Article  PubMed  CAS  Google Scholar 

  25. Guo Y, Li Q, Wu WJ, Tan W, Zhu X, Mu J, Bolli R (2008) Endothelial nitric oxide synthase is not necessary for the early phase of ischemic preconditioning in the mouse. J Mol Cell Cardiol 44:496–501. doi:10.1016/j.yjmcc.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  26. Guo Y, Sanganalmath SK, Wu W, Zhu X, Huang Y, Tan W, Ildstad ST, Li Q, Bolli R (2012) Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Res Cardiol 107:253. doi:10.1007/s00395-012-0253-9

    Article  PubMed  Google Scholar 

  27. Guo Y, Stein AB, Wu WJ, Tan W, Zhu X, Li QH, Dawn B, Motterlini R, Bolli R (2004) Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol 286:H1649–H1653. doi:10.1152/ajpheart.00971.2003

    Article  PubMed  CAS  Google Scholar 

  28. Guo Y, Stein AB, Wu WJ, Zhu X, Tan W, Li Q, Bolli R (2005) Late preconditioning induced by NO donors, adenosine A1 receptor agonists, and delta1-opioid receptor agonists is mediated by iNOS. Am J Physiol Heart Circ Physiol 289:H2251–H2257. doi:10.1152/ajpheart.00341.2005

    Article  PubMed  CAS  Google Scholar 

  29. Guo Y, Tang XL, Bao W, Bolli R (2000) How to produce infarction in the mouse in vivo. In: Downey JM (ed) The ISHR handbook of experimental of laboratory procedures (HELP). http://www.ishrworld.org/

  30. Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R (1998) Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:H1375–H1387

    PubMed  CAS  Google Scholar 

  31. Guo Y, Wu WJ, Zhu X, Tan W, Bolli R (2003) The development of the early phase of ischemic preconditioning in mice is not strain dependent. J Mol Cell Cardiol 35:A47–P110

    Google Scholar 

  32. Hale SL, Kloner RA (1999) Ischemic preconditioning and myocardial hypothermia in rabbits with prolonged coronary artery occlusion. Am J Physiol 276:H2029–H2034

    PubMed  CAS  Google Scholar 

  33. Hale SL, Kloner RA (1997) Myocardial temperature in acute myocardial infarction: protection with mild regional hypothermia. Am J Physiol 273:H220–H227

    PubMed  CAS  Google Scholar 

  34. Halestrap A (2005) Biochemistry: a pore way to die. Nature 434:578–579. doi:10.1038/434578a

    Article  PubMed  CAS  Google Scholar 

  35. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter workshop recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  36. Heger J, Godecke A, Flogel U, Merx MW, Molojavyi A, Kuhn-Velten WN, Schrader J (2002) Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 90:93–99

    Article  PubMed  CAS  Google Scholar 

  37. Heusch G, Buchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356. doi:10.1007/s00395-006-0589-0

    Article  PubMed  CAS  Google Scholar 

  38. Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM (2004) Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 109:1892–1897. doi:10.1161/01.CIR.0000124227.00670.AB

    Article  PubMed  CAS  Google Scholar 

  39. Ho HT, Chung SK, Law JW, Ko BC, Tam SC, Brooks HL, Knepper MA, Chung SS (2000) Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Mol Cell Biol 20:5840–5846

    Article  PubMed  CAS  Google Scholar 

  40. Hutter JJ, Mestril R, Tam EK, Sievers RE, Dillmann WH, Wolfe CL (1996) Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94:1408–1411

    Article  PubMed  CAS  Google Scholar 

  41. Jones WK, Flaherty MP, Tang XL, Takano H, Qiu Y, Banerjee S, Smith T, Bolli R (1999) Ischemic preconditioning increases iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism. J Mol Cell Cardiol 31:1469–1481. doi:10.1006/jmcc.1999.0983

    Article  PubMed  CAS  Google Scholar 

  42. Jung O, Marklund SL, Geiger H, Pedrazzini T, Busse R, Brandes RP (2003) Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ Res 93:622–629. doi:10.1161/01.RES.0000092140.81594.A8

    Article  PubMed  CAS  Google Scholar 

  43. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  44. Korff S, Riechert N, Schoensiegel F, Weichenhan D, Autschbach F, Katus HA, Ivandic BT (2006) Calcification of myocardial necrosis is common in mice. Virchows Arch 448:630–638. doi:10.1007/s00428-005-0071-7

    Article  PubMed  Google Scholar 

  45. Lefer DJ, Bolli R (2011) Development of an NIH consortium for preclinical assessment of cardioprotective therapies (CAESAR): a paradigm shift in studies of infarct size limitation. J Cardiovasc Pharmacol Ther 16:332–339. doi:10.1177/1074248411414155

    Article  PubMed  Google Scholar 

  46. Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, Trollinger DR, Herman B, Cascio WE (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS 76:99–114

    PubMed  CAS  Google Scholar 

  47. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD (1994) Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 124:843–851

    PubMed  CAS  Google Scholar 

  48. Li Q, Guo Y, Ou Q, Cui C, Wu WJ, Tan W, Zhu X, Lanceta LB, Sanganalmath SK, Dawn B, Shinmura K, Rokosh GD, Wang S, Bolli R (2009) Gene transfer of inducible nitric oxide synthase affords cardioprotection by upregulating heme oxygenase-1 via a nuclear factor-{kappa}B-dependent pathway. Circulation 120:1222–1230. doi:10.1161/CIRCULATIONAHA.108.778688

    Article  PubMed  CAS  Google Scholar 

  49. Li Q, Guo Y, Ou Q, Wu WJ, Chen N, Zhu X, Tan W, Yuan F, Dawn B, Luo L, Hunt GN, Bolli R (2011) Gene transfer as a strategy to achieve permanent cardioprotection II: rAAV-mediated gene therapy with heme oxygenase-1 limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol 106:1367–1377. doi:10.1007/s00395-011-0208-6

    Article  PubMed  CAS  Google Scholar 

  50. Li Q, Guo Y, Tan W, Ou Q, Wu WJ, Sturza D, Dawn B, Hunt G, Cui C, Bolli R (2007) Cardioprotection afforded by inducible nitric oxide synthase gene therapy is mediated by cyclooxygenase-2 via a nuclear factor-kappaB dependent pathway. Circulation 116:1577–1584. doi:10.1161/CIRCULATIONAHA.107.689810

    Article  PubMed  CAS  Google Scholar 

  51. Li Q, Guo Y, Tan W, Stein AB, Dawn B, Wu WJ, Zhu X, Lu X, Xu X, Siddiqui T, Tiwari S, Bolli R (2006) Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. Am J Physiol Heart Circ Physiol 290:H584–H589. doi:10.1152/ajpheart.00855.2005

    Article  PubMed  CAS  Google Scholar 

  52. Li Q, Guo Y, Wu WJ, Ou Q, Zhu X, Tan W, Yuan F, Chen N, Dawn B, Luo L, O’Brien E, Bolli R (2011) Gene transfer as a strategy to achieve permanent cardioprotection I: rAAV-mediated gene therapy with inducible nitric oxide synthase limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol 106:1355–1366. doi:10.1007/s00395-011-0207-7

    Article  PubMed  CAS  Google Scholar 

  53. Li Q, Guo Y, Xuan YT, Lowenstein CJ, Stevenson SC, Prabhu SD, Wu WJ, Zhu Y, Bolli R (2003) Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res 92:741–748. doi:10.1161/01.RES.0000065441.72685.29

    Article  PubMed  CAS  Google Scholar 

  54. Li TT, Larrucea S, Souza S, Leal SM, Lopez JA, Rubin EM, Nieswandt B, Bray PF (2004) Genetic variation responsible for mouse strain differences in integrin alpha 2 expression is associated with altered platelet responses to collagen. Blood 103:3396–3402. doi:10.1182/blood-2003-10-3721

    Article  PubMed  CAS  Google Scholar 

  55. Meldrum DR, Cleveland JC Jr, Cain BS, Meng X, Harken AH (1998) Increased myocardial tumor necrosis factor-alpha in a crystalloid-perfused model of cardiac ischemia-reperfusion injury. Ann Thorac Surg 65:439–443

    Article  PubMed  CAS  Google Scholar 

  56. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Ballantyne CM (1995) Myocardial ischemia and reperfusion: a murine model. Am J Physiol 269:H2147–H2154

    PubMed  CAS  Google Scholar 

  57. Miller DL, Van Winkle DM (1999) Ischemic preconditioning limits infarct size following regional ischemia-reperfusion in in situ mouse hearts. Cardiovasc Res 42:680–684

    Article  PubMed  CAS  Google Scholar 

  58. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-ishi S, Narumiya S (1997) Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388:678–682. doi:10.1038/41780

    Article  PubMed  CAS  Google Scholar 

  59. Ning XH, Xu CS, Song YC, Xiao Y, Hu YJ, Lupinetti FM, Portman MA (1998) Hypothermia preserves function and signaling for mitochondrial biogenesis during subsequent ischemia. Am J Physiol 274:H786–H793

    PubMed  CAS  Google Scholar 

  60. Sanganalmath SK, Abdel-Latif A, Bolli R, Xuan YT, Dawn B (2011) Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Res Cardiol 106:709–733. doi:10.1007/s00395-011-0183-y

    Article  PubMed  CAS  Google Scholar 

  61. Sanganalmath SK, Stein AB, Guo Y, Tiwari S, Hunt G, Vincent RJ, Huang Y, Rezazadeh A, Ildstad ST, Dawn B, Bolli R (2009) The beneficial effects of postinfarct cytokine combination therapy are sustained during long-term follow-up. J Mol Cell Cardiol 47:528–535. doi:10.1016/j.yjmcc.2009.07.009

    Article  PubMed  CAS  Google Scholar 

  62. Schwartz LM, Verbinski SG, Vander Heide RS, Reimer KA (1997) Epicardial temperature is a major predictor of myocardial infarct size in dogs. J Mol Cell Cardiol 29:1577–1583. doi:10.1006/jmcc.1997.0391

    Article  PubMed  CAS  Google Scholar 

  63. Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heide RS, Vinten-Johansen J, Yellon DM, National heart L, Blood Institute NIoH, (2011) New horizons in cardioprotection: recommendations from the 2010 National Heart, Lung, and Blood Institute Workshop. Circulation 124:1172–1179. doi:10.1161/CIRCULATIONAHA.111.032698

    Article  PubMed  Google Scholar 

  64. Stein AB, Guo Y, Tan W, Wu WJ, Zhu X, Li Q, Luo C, Dawn B, Johnson TR, Motterlini R, Bolli R (2005) Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. J Mol Cell Cardiol 38:127–134. doi:10.1016/j.yjmcc.2004.10.006

    Article  PubMed  CAS  Google Scholar 

  65. Tiano HF, Loftin CD, Akunda J, Lee CA, Spalding J, Sessoms A, Dunson DB, Rogan EG, Morham SG, Smart RC, Langenbach R (2002) Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 62:3395–3401

    PubMed  CAS  Google Scholar 

  66. van den Doel MA, Gho BC, Duval SY, Schoemaker RG, Duncker DJ, Verdouw PD (1998) Hypothermia extends the cardioprotection by ischaemic preconditioning to coronary artery occlusions of longer duration. Cardiovasc Res 37:76–81

    Article  PubMed  Google Scholar 

  67. Wang GW, Guo Y, Vondriska TM, Zhang J, Zhang S, Tsai LL, Zong NC, Bolli R, Bhatnagar A, Prabhu SD (2008) Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKC epsilon signaling and cardioprotection. J Mol Cell Cardiol 44:1016–1022. doi:10.1016/j.yjmcc.2008.03.020

    Article  PubMed  CAS  Google Scholar 

  68. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98:9050–9055. doi:10.1073/pnas.161283798

    Article  PubMed  CAS  Google Scholar 

  69. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Bolli R (2007) Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription 1/3 pathway. Circulation 116:535–544. doi:10.1161/CIRCULATIONAHA.107.689471

    Article  PubMed  CAS  Google Scholar 

  70. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  PubMed  CAS  Google Scholar 

  71. Zuba-Surma EK, Kucia M, Dawn B, Guo Y, Ratajczak MZ, Bolli R (2008) Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cell Cardiol 44:865–873. doi:10.1016/j.yjmcc.2008.02.279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH grants R01 HL55757, HL-70897, HL-76794, and P01HL78825. We would like to thank Xian-Liang Tang and Michael book for all of their help with statistical analysis in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bolli.

Additional information

Y. Guo and M. P. Flaherty contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Flaherty, M.P., Wu, WJ. et al. Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Res Cardiol 107, 288 (2012). https://doi.org/10.1007/s00395-012-0288-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0288-y

Keywords

Navigation