Skip to main content

Advertisement

Log in

A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

NA.

Code availability

NA.

References

  1. Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286–293. https://doi.org/10.1042/bj0170286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. In: Annals of the New York Academy of Sciences. Ann N Y Acad Sci, pp 190–200

  3. Kutscher WWH (1935) Prostataphosphatase. Hoppe-Seyler’s Zeitschrift für. Physiol Chem 236:237–240

    Article  CAS  Google Scholar 

  4. Gutman EB, Sproul EEGA (1936) Significance of increased phosphatase activity of bone at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am J Cancer 28:485–495

    Article  CAS  Google Scholar 

  5. Millán J (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341. https://doi.org/10.1007/S11302-005-5435-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harris H (1990) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186:133–150. https://doi.org/10.1016/0009-8981(90)90031-M

    Article  CAS  PubMed  Google Scholar 

  7. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29:269–278

    Article  CAS  Google Scholar 

  8. Ali AT, Penny CB, Paiker JE et al (2005) Alkaline phosphatase is involved in the control of adipogenesis in the murine preadipocyte cell line, 3T3-L1. Clin Chim Acta 354:101–109. https://doi.org/10.1016/j.cccn.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  9. Köllmer M, Buhrman JS, Zhang Y, Gemeinhart RA (2013) Markers are shared between adipogenic and osteogenic differentiated mesenchymal stem cells. J Dev Biol Tissue Eng 5:18–25. https://doi.org/10.5897/jdbte2013.0065

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weiss MJ, Ray K, Henthorn PS et al (1988) Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem 263:12002–12010. https://doi.org/10.1016/s0021-9258(18)37885-2

    Article  CAS  PubMed  Google Scholar 

  11. Kiledjian M, Kadesch T (1990) Analysis of the human liver/bone/kidney alkaline phosphatase promoter in vivo and in vitro. Nucleic Acids Res 18:957–961. https://doi.org/10.1093/nar/18.4.957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delgado-Calle J, Sañudo C, Sánchez-Verde L et al (2011) Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 49:830–838. https://doi.org/10.1016/j.bone.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  13. Zernik J, Kream B, Twarog K (1991) Tissue-specific and dexamethasone-inducible expression of Alkaline Phosphatase from alternative promoters of the rat Bone/Liver/Kidney/Placenta gene. Biochem Biophys Res Commun 176:1149–1156. https://doi.org/10.1016/0006-291X(91)90405-V

    Article  CAS  PubMed  Google Scholar 

  14. Sato N, Takahashi Y, Asano S (1994) Preferential usage of the bone-type leader sequence for the transcripts of liver/bone/kidney-type alkaline phosphatase gene in neutrophilic granulocytes. Blood 83:1093–1101. https://doi.org/10.1182/BLOOD.V83.4.1093.1093

    Article  CAS  PubMed  Google Scholar 

  15. Brun-Heath I, Ermonval M, Chabrol E et al (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536. https://doi.org/10.1007/s00441-010-1111-4

    Article  CAS  PubMed  Google Scholar 

  16. Orimo H (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 77:4–12

    Article  CAS  Google Scholar 

  17. Studer M, Terao M, Giannì M, Garattini E (1991) Characterization of a second promoter for the mouse liver/bone/kidney-type alkaline phosphatase gene: cell and tissue specific expression. Biochem Biophys Res Commun 179:1352–1360. https://doi.org/10.1016/0006-291X(91)91722-O

    Article  CAS  PubMed  Google Scholar 

  18. Gianni M, Terao M, Sozzani S, Garattini E (1993) Retinoic acid and cyclic AMP synergistically induce the expression of liver/bone/kidney-type alkaline phosphatase gene in L929 fibroblastic cells. Biochem J 296:67–77. https://doi.org/10.1042/bj2960067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yusa N, Watanabe K, Yoshida S et al (2000) Transcription factor Sp3 activates the liver/bone/kidney-type alkaline phosphatase promoter in hematopoietic cells. J Leukoc Biol 68:772–777. https://doi.org/10.1189/jlb.68.5.772

    Article  CAS  PubMed  Google Scholar 

  20. Di Lorenzo D, Albertini A, Zava D (1991) Progestin regulation of alkaline phosphatase in the human breast cancer cell line T47D. Cancer Res 51:4470–4475

    PubMed  Google Scholar 

  21. Rambaldi A, Terao M, Bettoni S et al (1990) Expression of leukocyte alkaline phosphatase gene in normal and leukemic cells: regulation of the transcript by granulocyte colony-stimulating factor. Blood 76:2565–2571. https://doi.org/10.1182/blood.v76.12.2565.bloodjournal76122565

    Article  CAS  PubMed  Google Scholar 

  22. Orimo H, Shimada T (2008) The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem 315:51–60. https://doi.org/10.1007/s11010-008-9788-3

    Article  CAS  PubMed  Google Scholar 

  23. Rawadi G, Vayssière B, Dunn F et al (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842–1853. https://doi.org/10.1359/jbmr.2003.18.10.1842

    Article  CAS  PubMed  Google Scholar 

  24. Tadokoro M, Kanai R, Taketani T et al (2009) New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 154:924–930. https://doi.org/10.1016/j.jpeds.2008.12.021

    Article  CAS  PubMed  Google Scholar 

  25. Hoylaerts MF, Ding L, Narisawa S et al (2006) Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45:9756–9766. https://doi.org/10.1021/bi052471+

    Article  CAS  PubMed  Google Scholar 

  26. Weiss MJ, Henthorn PS, Lafferty MA et al (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83:7182–7186. https://doi.org/10.1073/pnas.83.19.7182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fishman WH (1990) Alkaline phosphatase isozymes: recent progress. Clin Biochem 23:99–104. https://doi.org/10.1016/0009-9120(90)80019-F

    Article  CAS  PubMed  Google Scholar 

  28. Hahnel AC, Rappolee DA, Millan JL, Manes T, Ziomek CA, Theodosiou NG, Werb Z, Pedersen RA, Schultz GA (1990) Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110(2):555–564

    Article  CAS  Google Scholar 

  29. Dziedziejko V, Safranow K, Słowik-Zyłka D et al (2005) Comparison of rat and human alkaline phosphatase isoenzymes and isoforms using HPLC and electrophoresis. Biochim Biophys Acta 1752:26–33. https://doi.org/10.1016/j.bbapap.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  30. Kozlenkov A, Manes T, Hoylaerts MF, Millán JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277:22992–22999. https://doi.org/10.1074/jbc.M202298200

    Article  CAS  PubMed  Google Scholar 

  31. Le Du MH, Stigbrand T, Taussig MJ et al (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution: implication for a substrate specificity. J Biol Chem 276:9158–9165. https://doi.org/10.1074/jbc.M009250200

    Article  PubMed  Google Scholar 

  32. Bossi M, Hoylaerts MF, Millan JL (1993) Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J Biol Chem 268:25409–25416. https://doi.org/10.1016/s0021-9258(19)74407-x

    Article  CAS  PubMed  Google Scholar 

  33. Le Du MH, Millán JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277:49808–49814. https://doi.org/10.1074/jbc.M207394200

    Article  PubMed  Google Scholar 

  34. Pike AF, Kramer NI, Blaauboer BJ et al (2013) A novel hypothesis for an alkaline phosphatase “rescue” mechanism in the hepatic acute phase immune response. Biochim Biophys Acta 1832:2044–2056. https://doi.org/10.1016/j.bbadis.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  35. Gijsbers R, Ceulemans H, Stalmans W, Bollen M (2001) Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem 276:1361–1368. https://doi.org/10.1074/jbc.M007552200

    Article  CAS  PubMed  Google Scholar 

  36. Whyte MP, Landt M, Ryan LM et al (1995) Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5’- phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445. https://doi.org/10.1172/JCI117814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilson PD, Smith GP, Peters TJ (1983) Pyridoxal 5′-phosphate: a possible physiological substrate for alkaline phosphatase in human neutrophils. Histochem J 15:257–264. https://doi.org/10.1007/BF01006240

    Article  CAS  PubMed  Google Scholar 

  38. Fedde KN, Lane CC, Whyte MP (1988) Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys 264:400–409. https://doi.org/10.1016/0003-9861(88)90305-0

    Article  CAS  PubMed  Google Scholar 

  39. Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261. https://doi.org/10.1016/S0167-4838(01)00193-5

    Article  CAS  PubMed  Google Scholar 

  40. Say JC, Ciuffi K, Furriel RPM et al (1991) Alkaline phosphatase from rat osseous plates: purification and biochemical characterization of a soluble form. Biochim Biophys Acta 1074:256–262. https://doi.org/10.1016/0304-4165(91)90161-9

    Article  CAS  PubMed  Google Scholar 

  41. Rezende AA, Pizauro JM, Ciancaglini P, Leone FA (1994) Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Biochem J 301:517–522. https://doi.org/10.1042/bj3010517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000

    Article  CAS  Google Scholar 

  43. Bolean M, Simão AMS, Favarin BZ et al (2011) Thermodynamic properties and characterization of proteoliposomes rich in microdomains carrying alkaline phosphatase. Biophys Chem 158:111–118. https://doi.org/10.1016/j.bpc.2011.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428:4749–4764

    Article  CAS  Google Scholar 

  45. Nosjean O, Koyama I, Goseki M et al (1997) Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem J 321:297–303. https://doi.org/10.1042/bj3210297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martins MJ, Negrão MR, Hipólito-Reis C (2001) Alkaline phosphatase from rat liver and kidney is differentially modulated. Clin Biochem 34:463–468. https://doi.org/10.1016/S0009-9120(01)00255-7

    Article  CAS  PubMed  Google Scholar 

  47. Komaru K, Satou Y, Al-Shawafi HA et al (2016) Glycosylation-deficient mutations in tissue-nonspecific alkaline phosphatase impair its structure and function and are linked to infantile hypophosphatasia. FEBS J 283:1168–1179. https://doi.org/10.1111/febs.13663

    Article  CAS  PubMed  Google Scholar 

  48. Miura M, Sakagishi Y, Hata K, Komoda T (1994) Differences between the sugar moieties of liver- and bone-type alkaline phosphatases: a re-evaluation. Ann Clin Biochem 31:25–30. https://doi.org/10.1177/000456329403100104

    Article  CAS  PubMed  Google Scholar 

  49. Leung CT, Maleeff BE, Farrell HM (1989) Subcellular and ultrastructural localization of alkaline phosphatase in lactating rat mammary glands. J Dairy Sci 72:2495–2509. https://doi.org/10.3168/jds.S0022-0302(89)79390-5

    Article  CAS  PubMed  Google Scholar 

  50. Chirambo GM, van Niekerk C, Crowther NJ (2017) The role of alkaline phosphatase in intracellular lipid accumulation in the human hepatocarcinoma cell line, HepG2. Exp Mol Pathol 102:224–229. https://doi.org/10.1016/j.yexmp.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  51. Cave E, Crowther NJ (2020) Tissue non-specific alkaline phosphatase mediates the accumulation of cholesterol esters in the murine Y1 adrenal cortex cell line. Ann Anat 227:151420. https://doi.org/10.1016/j.aanat.2019.151420

    Article  PubMed  Google Scholar 

  52. Hulme-Moir KL, Clark P (2011) Sub-cellular localisation of alkaline phosphatase activity in the cytoplasm of tammar wallaby (Macropus eugenii) neutrophils and eosinophils. Vet Immunol Immunopathol 142:126–132. https://doi.org/10.1016/j.vetimm.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  53. Vittur F, Stagni N, Moro L, de Bernard B (1984) Alkaline phosphatase binds to collagen; a hypothesis on the mechanism of extravesicular mineralization in epiphyseal cartilage. Experientia 40:836–837. https://doi.org/10.1007/BF01951980

    Article  CAS  PubMed  Google Scholar 

  54. Balcerzak M, Hamade E, Zhang L et al (2003) The roles of annexins and alkaline phosphatase in mineralization process Circled white star. Acta Biochim Pol 50:1019–1038

    Article  CAS  Google Scholar 

  55. Prosdocimo DA, Douglas DC, Romani AM et al (2009) Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells. Am J Physiol-Cell Physiol 296:C828–C839. https://doi.org/10.1152/ajpcell.00619.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Johnson KA, Hessle L, Vaingankar S et al (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol-Regul Integr Comp Physiol 279:R1365–R1377. https://doi.org/10.1152/ajpregu.2000.279.4.r1365

    Article  CAS  PubMed  Google Scholar 

  57. Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270. https://doi.org/10.1126/science.289.5477.265

    Article  CAS  PubMed  Google Scholar 

  58. Zhao G, Xu MJ, Zhao MM et al (2012) Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. Kidney Int 82:34–44. https://doi.org/10.1038/ki.2012.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim HJ, Minashima T, McCarthy EF et al (2010) Progressive ankylosis protein (ank) in osteoblasts and osteoclasts controls bone formation and bone remodeling. J Bone Miner Res 25:1771–1783. https://doi.org/10.1002/jbmr.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim HJ, Delaney JD, Kirsch T (2010) The role of pyrophosphate/phosphate homeostasis in terminal differentiation and apoptosis of growth plate chondrocytes. Bone 47:657–665. https://doi.org/10.1016/j.bone.2010.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  CAS  Google Scholar 

  62. Beck GR (2003) Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90:234–243

    Article  CAS  Google Scholar 

  63. Ding J, Ghali O, Lencel P et al (2009) TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci 84:499–504. https://doi.org/10.1016/j.lfs.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  64. Hortells L, Sosa C, Guillén N et al (2017) Identifying early pathogenic events during vascular calcification in uremic rats. Kidney Int 92:1384–1394. https://doi.org/10.1016/j.kint.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  65. Aikawa E, Nahrendorf M, Figueiredo J-L et al (2007) Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Vasc Med 116:2841–2850. https://doi.org/10.1161/CIRCULATIONAHA.107.732867

    Article  CAS  Google Scholar 

  66. Savinov AY, Salehi M, Yadav MC et al (2015) Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. J Am Heart Assoc 4:e002499. https://doi.org/10.1161/JAHA.115.002499

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sheen CR, Kuss P, Narisawa S et al (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30:824–836. https://doi.org/10.1002/jbmr.2420

    Article  CAS  PubMed  Google Scholar 

  68. Romanelli F, Corbo AM, Salehi M et al (2017) Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells accelerates coronary artery disease in a mouse model of familial hypercholesterolemia. PLoS ONE 12:e0186426. https://doi.org/10.1371/journal.pone.0186426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Speer MY, McKee MD, Guldberg RE et al (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 196:1047–1055. https://doi.org/10.1084/jem.20020911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Steitz SA, Speer MY, McKee MD et al (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 161:2035–2046. https://doi.org/10.1016/S0002-9440(10)64482-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 96:8156–8160. https://doi.org/10.1073/pnas.96.14.8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203. https://doi.org/10.1074/jbc.M909174199

    Article  CAS  PubMed  Google Scholar 

  73. Narisawa S, Yadav MC, Millán JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598. https://doi.org/10.1002/jbmr.1901

    Article  CAS  PubMed  Google Scholar 

  74. Goettsch C, Strzelecka-Kiliszek A, Bessueille L et al (2020) TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa299

    Article  PubMed Central  Google Scholar 

  75. Panh L, Lairez O, Ruidavets JB et al (2017) Coronary artery calcification: from crystal to plaque rupture. Arch Cardiovasc Dis 110:550–561

    Article  Google Scholar 

  76. Panh L, Ruidavets JB, Rousseau H et al (2017) Association between serum alkaline phosphatase and coronary artery calcification in a sample of primary cardiovascular prevention patients. Atherosclerosis 260:81–86. https://doi.org/10.1016/j.atherosclerosis.2017.03.030

    Article  CAS  PubMed  Google Scholar 

  77. Cheung BMY, Ong KL, Wong LYF (2009) Elevated serum alkaline phosphatase and peripheral arterial disease in the United States National Health and Nutrition Examination Survey 1999–2004. Int J Cardiol 135:156–161. https://doi.org/10.1016/j.ijcard.2008.03.039

    Article  PubMed  Google Scholar 

  78. Ryu WS, Lee SH, Kim CK et al (2010) Increased serum alkaline phosphatase as a predictor of long-term mortality after stroke. Neurology 75:1995–2002. https://doi.org/10.1212/WNL.0b013e3181ff966a

    Article  CAS  PubMed  Google Scholar 

  79. Tonelli M, Curhan G, Pfeffer M et al (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120:1784–1792. https://doi.org/10.1161/CIRCULATIONAHA.109.851873

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki N, Irie M, Iwata K et al (2006) Altered expression of alkaline phosphatase (ALP) in the liver of primary biliary cirrhosis (PBC) patients. Hepatol Res 35:37–44. https://doi.org/10.1016/j.hepres.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  81. Narayanan S (1991) Serum alkaline phosphatase isoenzymes as markers of liver disease. Ann Clin Lab Sci 21:12–18

    CAS  PubMed  Google Scholar 

  82. Nouwen EJDBM (1994) Human intestinal versus tissue-nonspecific alkaline phosphatase as complementary urinary markers for the proximal tubule. Kidney Int Suppl 47:S43-51

    CAS  PubMed  Google Scholar 

  83. Kapojos JJ, Poelstra K, Borghuis T et al (2003) Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide. Int J Exp Pathol 84:135–144. https://doi.org/10.1046/j.1365-2613.2003.00345.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bentala H, Verweij WR, Huizinga-Van Der Vlag A et al (2002) Removal of phosphate from lipid a as a strategy to detoxify lipopolysaccharide. Shock 18:561–566. https://doi.org/10.1097/00024382-200212000-00013

    Article  PubMed  Google Scholar 

  85. Fonta C, Négyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609. https://doi.org/10.1093/cercor/bhh021

    Article  PubMed  Google Scholar 

  86. Négyessy L, Xiao J, Kántor O et al (2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 172:406–418. https://doi.org/10.1016/j.neuroscience.2010.10.049

    Article  CAS  PubMed  Google Scholar 

  87. Waymire KG, Mahuren JD, Jaje JM et al (1995) Mice lacking tissue non–specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B–6. Nat Genet 11:45–51. https://doi.org/10.1038/ng0995-45

    Article  CAS  PubMed  Google Scholar 

  88. Kellett KA, Williams J, Vardy ER et al (2011) Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function. Int J Mol Epidemiol Genet 2:114–121

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hanics J, Barna J, Xiao J et al (2012) Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349:459–471. https://doi.org/10.1007/s00441-012-1455-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gómez-Ramos A, Díaz-Hernández M, Cuadros R et al (2006) Extracellular tau is toxic to neuronal cells. FEBS Lett 580:4842–4850. https://doi.org/10.1016/j.febslet.2006.07.078

    Article  CAS  PubMed  Google Scholar 

  91. Díaz-Hernández M, Gómez-Ramos A, Rubio A et al (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548. https://doi.org/10.1074/jbc.M110.145003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ermonval M, Baudry A, Baychelier F et al (2009) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS ONE 4:e0006497. https://doi.org/10.1371/journal.pone.0006497

    Article  CAS  Google Scholar 

  93. Štefková K, Procházková J, Pacherník J (2015) Alkaline phosphatase in stem cells. Stem Cells Int 2015:628368. https://doi.org/10.1155/2015/628368

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stoop H, Honecker F, Cools M et al (2005) Differentiation and development of human female germ cells during prenatal gonadogenesis: an immunohistochemical study. Hum Reprod 20:1466–1476. https://doi.org/10.1093/humrep/deh800

    Article  CAS  PubMed  Google Scholar 

  95. Ginsburg M, Snow MH, Mclaren MA (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110(2):521–528

    Article  CAS  Google Scholar 

  96. Narisawa S, Fröhlander NMJ (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  CAS  Google Scholar 

  97. Langer D, Ikehara Y, Takebayashi H et al (2007) The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience 150:863–879. https://doi.org/10.1016/j.neuroscience.2007.07.064

    Article  CAS  PubMed  Google Scholar 

  98. Sobiesiak M, Sivasubramaniyan K, Hermann C et al (2010) The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells Dev 19:669–677. https://doi.org/10.1089/scd.2009.0290

    Article  CAS  PubMed  Google Scholar 

  99. Kim YH, Yoon DS, Kim HO, Lee JW (2012) Characterization of different subpopulations from bone marrow-derived mesenchymal stromal cells by alkaline phosphatase expression. Stem Cells Dev 21:2958–2968. https://doi.org/10.1089/scd.2011.0349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ali AT, Penny CB, Paiker JE et al (2006) The relationship between alkaline phosphatase activity and intracellular lipid accumulation in murine 3T3-L1 cells and human preadipocytes. Anal Biochem 354:247–254. https://doi.org/10.1016/j.ab.2006.04.028

    Article  CAS  PubMed  Google Scholar 

  101. Cyboron GW, Vejins MS, Wuthier RE (1982) Activity of epiphyseal cartilage membrane alkaline phosphatase and the effects of its inhibitors at physiological pH. J Biol Chem 257:4141–4146. https://doi.org/10.1016/s0021-9258(18)34697-0

    Article  CAS  PubMed  Google Scholar 

  102. Hernández-Mosqueira C, Velez-Delvalle C, Kuri-Harcuch W (2015) Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes. Biochim Biophys Acta 1850:2485–2496. https://doi.org/10.1016/j.bbagen.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  103. Wallach DP, Ko H (1964) Some properties of an alkaline phosphatase from rat adipose tissue. Can J Biochem Physiol 42:1445–1457. https://doi.org/10.1139/o64-156

    Article  CAS  Google Scholar 

  104. Lecoeur L, Ouhayoun JP (1997) In vitro induction of osteogenic differentiation from non-osteogenic mesenchymal cells. Biomaterials 18:989–993. https://doi.org/10.1016/S0142-9612(97)00025-2

    Article  CAS  PubMed  Google Scholar 

  105. Bianco P, Costantini M, Dearden LC, Bonucci E (1988) Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. Br J Haematol 68:401–403. https://doi.org/10.1111/j.1365-2141.1988.tb04225.x

    Article  CAS  PubMed  Google Scholar 

  106. Kodama HA, Koyama H, Sudo H, Kasai S (1983) Adipose conversion of mouse bone marrow fibroblasts in vitro: their alkaline phosphatase activity. Cell Struct Funct 8:19–27. https://doi.org/10.1247/csf.8.19

    Article  CAS  PubMed  Google Scholar 

  107. Yoshida H, Yumoto T (1987) Alkaline phosphatase-positive reticular cells of chicken bone marrow—in vivo and in vitro studies. Int J Cell Cloning 5:35–54. https://doi.org/10.1002/stem.5530050105

    Article  CAS  PubMed  Google Scholar 

  108. Mahmood A, Shao JS, Alpers DH (2003) Rat enterocytes secrete SLPs containing alkaline phosphatase and cubilin in response to corn oil feeding. Am J Physiol-Gastrointest Liver Physiol 285:G433–G441. https://doi.org/10.1152/ajpgi.00466.2002

    Article  CAS  PubMed  Google Scholar 

  109. Narisawa S, Huang L, Iwasaki A et al (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23:7525–7530. https://doi.org/10.1128/mcb.23.21.7525-7530.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Naviglio S, Spina A, Chiosi E et al (2006) Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 98:1584–1596. https://doi.org/10.1002/jcb.20892

    Article  CAS  PubMed  Google Scholar 

  111. Hamade T, Bianchi A, Sebillaud S et al (2010) Inorganic phosphate (Pi) modulates the expression of key regulatory proteins of the inorganic pyrophosphate (PPi) metabolism in TGF-β1-stimulated chondrocytes. In: Bio-Medical Materials and Engineering. Biomed Mater Eng, pp 209–215

  112. Beck GR, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357. https://doi.org/10.1073/pnas.140021997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Conrads KA, Yi M, Simpson KA et al (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics 4:1284–1296. https://doi.org/10.1074/mcp.M500082-MCP200

    Article  CAS  PubMed  Google Scholar 

  114. Fujita T, Meguro T, Izumo N et al (2001) Phosphate stimulates differentiation and mineralization of the chondroprogenitor clone ATDC5. Jpn J Pharmacol 85:278–281. https://doi.org/10.1254/jjp.85.278

    Article  CAS  PubMed  Google Scholar 

  115. Fujita T, Izumo N, Fukuyama R et al (2001) Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells. Biochem Biophys Res Commun 280:348–352. https://doi.org/10.1006/bbrc.2000.4108

    Article  CAS  PubMed  Google Scholar 

  116. Kanatani M, Sugimoto T, Kano J et al (2003) Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J Cell Physiol 196:180–189. https://doi.org/10.1002/jcp.10270

    Article  CAS  PubMed  Google Scholar 

  117. Sapio L, Sorvillo L, Illiano M et al (2015) Inorganic phosphate prevents Erk1/2 and Stat3 activation and improves sensitivity to doxorubicin of MDA-MB-231 breast cancer cells. Molecules 20:15910–15928. https://doi.org/10.3390/molecules200915910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Socorro M, Shinde A, Yamazaki H et al (2020) Trps1 transcription factor represses phosphate-induced expression of SerpinB2 in osteogenic cells. Bone 141:e115673. https://doi.org/10.1016/j.bone.2020.115673

    Article  CAS  Google Scholar 

  119. Li Z, Wiernek S, Patterson C et al (2018) MicroRNA-21 mediates high phosphate-induced endothelial cell apoptosis. Am J Physiol-Cell Physiol 315:C830–C838. https://doi.org/10.1152/ajpcell.00198.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liang J, Fu M, Ciociola E et al (2007) Role of ENPP1 on adipocyte maturation. PLoS ONE 2:e0000882. https://doi.org/10.1371/journal.pone.0000882

    Article  CAS  Google Scholar 

  121. Forand A, Koumakis E, Rousseau A et al (2016) Disruption of the phosphate transporter Pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep 16:2736–2748. https://doi.org/10.1016/j.celrep.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  122. Takada I, Suzawa M, Matsumoto K, Kato S (2007) Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. In: Annals of the New York Academy of Sciences. Ann N Y Acad Sci, pp 182–195

  123. Korostishevsky M, Cohen Z, Malkin I et al (2010) Morphological and biochemical features of obesity are associated with mineralization genes polymorphisms. Int J Obes 34:1308–1318. https://doi.org/10.1038/ijo.2010.53

    Article  CAS  Google Scholar 

  124. Meyre D, Bouatia-Naji N, Tounian A et al (2005) Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 37:863–867. https://doi.org/10.1038/ng1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goldfine ID, Maddux BA, Youngren JF et al (2008) The role of membrane glycoprotein plasma cell antigen 1/ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities. Endocr Rev 29:62–75

    Article  CAS  Google Scholar 

  126. Hou Y, Xue P, Bai Y et al (2012) Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein β during adipogenesis. Free Radic Biol Med 52:462–472. https://doi.org/10.1016/j.freeradbiomed.2011.10.453

    Article  CAS  PubMed  Google Scholar 

  127. Chen Y, Xue P, Hou Y et al (2013) Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol Appl Pharmacol 273:435–441. https://doi.org/10.1016/j.taap.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  128. Pi J, Leung L, Xue P et al (2010) Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem 285:9292–9300. https://doi.org/10.1074/jbc.M109.093955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xue P, Hou Y, Chen Y et al (2013) Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes 62:845–854. https://doi.org/10.2337/db12-0584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guder WG, Schmolke MWG (1992) Carbohydrate and lipid metabolism of the renal tubule in diabetes mellitus. Eur J Clin Chem Clin Biochem 30:669–674

    CAS  PubMed  Google Scholar 

  131. Sharma I, Liao Y, Zheng X, Kanwar YS (2021) New pandemic: obesity and associated nephropathy. Front Med 8:673556

    Article  Google Scholar 

  132. Karlsson A, Khalfan L, Dahlgren C et al (1995) Neutrophil alkaline phosphatase activity increase in bacterial infections is not associated with a general increase in secretory vesicle membrane components. Infect Immun 63:911–916

    Article  CAS  Google Scholar 

Download references

Funding

WF funding: National Research Foundation (NRF) of South Africa (Grant 118565). NC funding: The National Research Foundation of South Africa (Grant 93999), The National Health Laboratory Services Research Trust (Grant 94311) and University of the Witwatersrand Faculty of Health Sciences Research Committee (Grant 4875crowther). ‘Any opinion, finding, conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard’.

Author information

Authors and Affiliations

Authors

Contributions

C-LB and EMC involved in writing a portion of the first draft. NJC involved in adding some additional information and editing the final draft. WFF contributed to rewriting the manuscript, adding additional information, the final edits and manuscript submission.

Corresponding author

Correspondence to William Frank Ferris.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Research involving humans and/or animals

NA.

Ethical approval

NA.

Consent to participate

All authors consent to publishing this manuscript.

Consent for publication

All authors consent to publishing this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartlett, CL., Cave, E.M., Crowther, N.J. et al. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 477, 2093–2106 (2022). https://doi.org/10.1007/s11010-022-04429-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04429-w

Keywords

Navigation