Skip to main content

Advertisement

Log in

Retinopathy of prematurity: contribution of inflammatory and genetic factors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Retinopathy of prematurity (ROP) is a retinal vasoproliferative disorder that represents an important cause of childhood visual impairment and blindness. Although oxidative stress has long been implicated in ROP etiology, other prenatal and perinatal factors are also involved. This review focuses on current research involving inflammation and genetic factors in the pathogenesis of ROP. Increasing evidence suggests that perinatal inflammation or infection contributes to ROP pathogenesis. Cytokines and chemokines with a fundamental role in inflammatory responses and that significantly contributing to angiogenesis are analyzed. Microglia cells, the retinal-resident macrophages, are crucial for retinal homeostasis, however, under sustained pathological stimuli release exaggerated amounts of inflammatory mediators and can promote pathological neovascularization. Current modulation of angiogenic cytokines, such as treatment with antibodies to vascular endothelial growth factor (anti-VEGF), has shown efficacy in the treatment of ocular neovascularization; however, some patients are refractory to anti-VEGF agents, suggesting that other angiogenic or anti-angiogenic cytokines need to be identified. Much evidence suggests that genetic factors contribute to the phenotypic variability of ROP. Several studies have implicated the involvement of candidate genes from different signaling pathways in the development of ROP. However, a genetic component with a major impact on ROP has not yet been discovered. Most studies have limitations and did not replicate results. Future research involving bioinformatics, genomics, and proteomics may contribute to finding more genes associated with ROP and may allow discovering better solutions in the management and treatment of ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AA:

Arachidonic acid

ADAM:

“A” disintegrin and metalloproteinase

ANGs:

Angiopoietins

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BH4:

Tetrahydrobiopterin

BV:

Blood vessels

BW:

Birth weight

EC:

Endothelial cells

eNOS:

Endothelial nitric oxide synthase

ECM:

Extracellular matrix

EPAS1:

Endothelial PAS Domain Protein 1

EPO:

Erythropoietin

FEVR:

Familial exudative vitreoretinopathy

GA:

Gestational age

HIF:

Hypoxia-inducible factor

HMOX-1:

Heme oxygenase 1

ICAM-1:

Intercellular adhesion molecule-1

IFN-γ:

Interferon gamma

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

IL-1Ra:

Interleukin 1 receptor antagonist

iNOS:

Inducible nitric oxide synthase

I-TAC:

Interferon-inducible T-cell alpha chemoattractant

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemotactic protein 1

MMPs:

Matrix metalloproteinases

NGF:

Nerve growth factor

NTs:

Neurotrophins

OIR:

Oxygen-induced retinopathy

OS:

Oxidative stress

PC:

Prostacyclin

PDGF:

Platelet-derived growth factor

PGs:

Prostaglandins

PLA2:

Phospholipase A2

PLGF:

Placental growth factor

PPARγ:

Proliferator-activated receptor gamma

PTI:

Preterm infants

RANTES:

Regulated on activation, normal T cell expressed and secreted

ROP:

Retinopathy of prematurity

ROS:

Reactive oxygen species

Sema3A:

Semaphoring 3A

SNPs:

Single-nucleotide polymorphisms

TA:

Thromboxane

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

Trk:

Tropomyosin kinase

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

Wk:

Weeks

References

  1. Giusti B, Vestrini A, Poggi C, Magi A, Pasquini E, Abbate R, Dani C (2012) Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants. Free Radic Res 46:1130–1139. https://doi.org/10.3109/10715762.2012.692787

    Article  CAS  PubMed  Google Scholar 

  2. Port AD, Chan RVP, Ostmo S, Choi D, Chiang MF (2014) Risk factors for retinopathy of prematurity: insights from outlier infants. Graefe’s Arch Clin Exp Ophthalmol 252(10):1669–1677. https://doi.org/10.1007/s00417-014-2716-1

    Article  Google Scholar 

  3. Aydin H, Gunay M, Celik G, Gunay BO, Taka U, Karaman A (2016) Evaluation of Factor V Leiden, Prothrombin G20210A, MTHFR C677T and MTHFR A1298C gene polymorphisms in retinopathy of prematurity in a Turkish cohort. Ophthalmic Genet 37(4):415–418. https://doi.org/10.3109/13816810.2015.1126611

    Article  CAS  PubMed  Google Scholar 

  4. Jang JH, Kim YC (2020) Retinal vascular development in an immature retina at 33–34 weeks postmenstrual age predicts retinopathy of prematurity. Sci Rep 10(1):18111. https://doi.org/10.1038/s41598-020-75151-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith LEH (2004) Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res. https://doi.org/10.1016/j.ghir.2004.03.030

    Article  PubMed  Google Scholar 

  6. Liu CH, Wang Z, Sun Y, Chen J (2017) Animal models of ocular angiogenesis: from development to pathologies. FASEB J 31(11):4665–4681. https://doi.org/10.1096/fj.201700336R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suwanpradid J, Rojas M, Behzadian MA, Caldwell RW, Caldwell RB (2014) Arginase 2 deficiency prevents oxidative stress and limits hyperoxia-induced retinal vascular degeneration. PLoS ONE 9(11):e110604. https://doi.org/10.1371/journal.pone.0110604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perrone S, Santacroce A, Longini M, Proietti F, Bazzini F, Buonocore G (2018) The free radical diseases of prematurity: from cellular mechanisms to bedside. Oxid Med Cell Longev 2018:7483062. https://doi.org/10.1155/2018/7483062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartnett ME (2015) Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122(1):200–210. https://doi.org/10.1016/j.ophtha.2014.07.050

    Article  PubMed  Google Scholar 

  10. Smith LEH (2008) Through the eyes of a child: understanding retinopathy through ROP—The Friedenwald Lecture. Invest Ophthalmol Vis Sci 49(12):5177–5182. https://doi.org/10.1167/iovs.08-2584

    Article  PubMed  Google Scholar 

  11. Sapieha P, Hamel D, Shao Z, Rivera JC, Zaniolo K, Joyal JS, Chemtob S (2010) Proliferative retinopathies: angiogenesis that blinds. Int J Biochem Cell Biol 42(1):5–12. https://doi.org/10.1016/j.biocel.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  12. Chiang MF, Quinn GE, Fielder AR et al (2021) International classification of retinopathy of prematurity, third edition. Ophthalmology 128(10):e51–e68. https://doi.org/10.1016/j.ophtha.2021.05.031

    Article  PubMed  Google Scholar 

  13. Hartnett ME (2010) Studies on the pathogenesis of avascular retina and neovascularization into the vitreous in peripheral severe retinopathy of prematurity (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 108:96–119

    PubMed  PubMed Central  Google Scholar 

  14. Zin A, Gole GA (2013) Retinopathy of prematurity-incidence today. Clin Perinatol 40(2):185–200. https://doi.org/10.1016/j.clp.2013.02.001

    Article  PubMed  Google Scholar 

  15. Chang JW (2019) Risk factor analysis for the development and progression of retinopathy of prematurity. PLoS ONE 14(7):e0219934. https://doi.org/10.1371/journal.pone.0219934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quinn GE, Ying GS, Bell EF, Donohue PK, Morrison D, Tomlinson LA, Binenbaum G (2018) Incidence and early course of retinopathy of prematurity: secondary analysis of the Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study. JAMA Ophthalmol 136(12):1383–1389. https://doi.org/10.1001/jamaophthalmol.2018.4290

    Article  PubMed  PubMed Central  Google Scholar 

  17. Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C (2013) Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res 74(Suppl 1):35–49. https://doi.org/10.1038/pr.2013.205

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goldstein GP, Leonard SA, Kan P, Koo EB, Lee HC, Carmichael SL (2019) Prenatal and postnatal inflammation-related risk factors for retinopathy of prematurity. J Perinatol 39(7):964–973. https://doi.org/10.1038/s41372-019-0357-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saugstad OD (2005) Oxidative stress in the newborn—a 30-year perspective. Biol Neonate 88(3):228–236. https://doi.org/10.1159/000087586

    Article  CAS  PubMed  Google Scholar 

  20. Dammann O (2010) Inflammation and retinopathy of prematurity. Acta Paediatr Int J Paediatr 99(7):975–977. https://doi.org/10.1111/j.1651-2227.2010.01836.x

    Article  Google Scholar 

  21. Sullivan JL (1986) Retinopathy of prematurity and iron: a modification of the oxygen hypothesis. Pediatrics 78(6):1171–1172

    Article  CAS  PubMed  Google Scholar 

  22. Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: Implications in disease. Free Radic Biol Med 47(4):344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poggi C, Giusti B, Vestri A, Pasquini E, Abbate R, Dani C (2012) Genetic polymorphisms of antioxidant enzymes in preterm infants. J Matern Neonatal Med 25(Suppl 4):131–134. https://doi.org/10.3109/14767058.2012.714976

    Article  CAS  Google Scholar 

  24. Good WV, Hardy RJ, Dobson V et al (2005) The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics 116(1):15–23. https://doi.org/10.1542/peds.2004-1413

    Article  PubMed  Google Scholar 

  25. Patz A (1980) Studies on retinal neovascularization. Friedenwald lecture. Investig Ophthalmol Vis Sci 19(10):1133–1138

    CAS  Google Scholar 

  26. York JR, Landers S, Kirby RS, Arbogast PG, Penn JS (2004) Arterial oxygen fluctuation and retinopathy of prematurity in very-low-birth-weight infants. J Perinatol 24(2):82–87. https://doi.org/10.1038/sj.jp.7211040

    Article  PubMed  Google Scholar 

  27. Lenhartova N, Matasova K, Lasabova Z, Javorka K (2017) Impact of early aggressive nutrition on retinal development in premature infants. Physiol Res 66(Suppl 2):S215–S226. https://doi.org/10.33549/physiolres.933677

    Article  CAS  PubMed  Google Scholar 

  28. Gagliardi L, Rusconi F, Da Frè M, Mello G, Carnielli V, Di Lallo D, Macagno F, Miniaci S, Corchia C, Cuttini M (2013) Pregnancy disorders leading to very preterm birth influence neonatal outcomes: results of the population-based ACTION cohort study. Pediatr Res 73(6):794–801. https://doi.org/10.1038/pr.2013.52

    Article  PubMed  Google Scholar 

  29. Gallo J, Jacobson L, Broberger U (1993) Perinatal factors associated with retinopathy of prematurity. Acta Pædiatrica 82(10):829–834. https://doi.org/10.1111/j.1651-2227.1993.tb12573.x

    Article  CAS  PubMed  Google Scholar 

  30. Spiegler J, Jensen R, Segerer H, Ehlers S, Kühn T, Jenke A, Gebauer C, Möller J, Orlikowsky T, Heitmann F, Boeckenholt K, Herting E, Göpel W (2013) Influence of smoking and alcohol during pregnancy on outcome of VLBW infants. Z Geburtshilfe Neonatol 217(6):215–219. https://doi.org/10.1055/s-0033-1361145

    Article  CAS  PubMed  Google Scholar 

  31. Reem RE, Nguyen T, Yu Y, Ying G-S, Tomlinson LA, Binenbaum G (2021) Effects of altitude on retinopathy of prematurity. J Am Assoc Pediatr Ophthalmol Strabismus 61(7):2190. https://doi.org/10.1016/j.jaapos.2021.08.254

    Article  Google Scholar 

  32. Yang MB, Rao S, Copenhagen DR, Lang RA (2013) Length of day during early gestation as a predictor of risk for severe retinopathy of prematurity. Ophthalmology 120(12):2706–2713. https://doi.org/10.1016/j.ophtha.2013.07.051

    Article  PubMed  Google Scholar 

  33. Chan RV, Yonekawa Y, Morrison MA, Sun G, Wong RK, Perlman JM, Chiang MF, Lee TC, Hartnett ME, Deangelis MM (2010) Association between assisted reproductive technology and advanced retinopathy of prematurity. Clin Ophthalmol 4:1385–1390. https://doi.org/10.2147/OPTH.S15587

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barker L, Bunce C, Husain S, Adams GGW (2017) Is artificial reproductive technology a risk factor for retinopathy of prematurity independent of the generation of multiple births? Eur J Ophthalmol 27(2):174–178. https://doi.org/10.5301/ejo.5000832

    Article  PubMed  Google Scholar 

  35. Hartnett ME (2017) Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol 62(3):257–276. https://doi.org/10.1016/j.survophthal.2016.12.004

    Article  PubMed  Google Scholar 

  36. Shastry BS (2010) Genetic susceptibility to advanced retinopathy of prematurity (ROP). J Biomed Sci 17(1):69. https://doi.org/10.1186/1423-0127-17-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pietrzyk JJ, Kwinta P, Bik-Multanowski M, Madetko-Talowska A, Jagła M, Tomasik T, Mitkowska Z, Wollen EJ, Nygård S, Saugstad OD (2013) New insight into the pathogenesis of retinopathy of prematurity: assessment of whole-genome expression. Pediatr Res 73(4 Pt 1):476–483. https://doi.org/10.1038/pr.2012.195

    Article  CAS  PubMed  Google Scholar 

  38. Lee J, Dammann O (2012) Perinatal infection, inflammation, and retinopathy of prematurity. Semin Fetal Neonatal Med 17(1):26–29. https://doi.org/10.1016/j.siny.2011.08.007

    Article  PubMed  Google Scholar 

  39. Ahn YJ, Hong KE, Yum HR, Lee JH, Kim KS, Youn YA, Park SH (2017) Characteristic clinical features associated with aggressive posterior retinopathy of prematurity. Eye 31(6):924–930. https://doi.org/10.1038/eye.2017.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Tang K, Chen L, Cheng S, Xu H (2019) Association between sepsis and retinopathy of prematurity: a systematic review and meta-analysis. BMJ Open 9(5):e025440. https://doi.org/10.1136/bmjopen-2018-025440

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hong HK, Lee HJ, Ko JH, Park JH, Park JY, Choi CW, Yoon CH, Ahn SJ, Park KH, Woo SJ, Oh JY (2014) Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity. J Neuroinflam 11:87. https://doi.org/10.1186/1742-2094-11-87

    Article  CAS  Google Scholar 

  42. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. https://doi.org/10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Zhang SX, Hartnett ME (2013) Signaling pathways triggered by oxidative stress that mediate features of severe retinopathy of prematurity. Arch Ophthalmol 131(1):80–85. https://doi.org/10.1001/jamaophthalmol.2013.986

    Article  Google Scholar 

  44. Mataftsi A, Dimitrakos SA, Adams GGW (2011) Mediators involved in retinopathy of prematurity and emerging therapeutic targets. Early Hum Dev 87(10):683–690. https://doi.org/10.1016/j.earlhumdev.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  45. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87(7):1153–1155. https://doi.org/10.1016/s0092-8674(00)81810-3

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Zhao R, Chen J, Jin J, Yu Y, Tian Y, Li W, Wang W, Zhou H, Su SB (2017) The effect of interleukin 38 on angiogenesis in a model of oxygen-induced retinopathy. Sci Rep 7(1):256. https://doi.org/10.1038/s41598-017-03079-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. https://doi.org/10.1146/annurev-cellbio-092910-154002

    Article  CAS  PubMed  Google Scholar 

  48. Sood BG, Madan A, Saha S, Schendel D, Thorsen P, Skogstrand K, Hougaard D, Shankaran S, Carlo W (2010) Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res 67(4):394–400. https://doi.org/10.1203/PDR.0b013e3181d01a36

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sato T, Kusaka S, Hashida N, Saishin Y, Fujikado T, Tano Y (2009) Comprehensive gene-expression profile in murine oxygen-induced retinopathy. Br J Ophthalmol 93(1):96–103. https://doi.org/10.1136/bjo.2008.142646

    Article  CAS  PubMed  Google Scholar 

  50. Sato T, Kusaka S, Shimojo H, Fujikado T (2009) Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 116(11):2165–2169. https://doi.org/10.1016/j.ophtha.2009.04.026

    Article  PubMed  Google Scholar 

  51. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100(5):2645–2650. https://doi.org/10.1073/pnas.0437939100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hangai M, Yoshimura N, Yoshida M, Yabuuchi K, Honda Y (1995) Interleukin-1 gene expression in transient retinal ischemia in the rat. Investig Ophthalmol Vis Sci 36(3):571–578

    CAS  Google Scholar 

  53. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, Honoré JC, Quiniou C, Joyal JS, Hardy P, Sennlaub F, Lubell W, Chemtob S (2013) Microglia and interleukin-1β in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol 33(8):1881–1891. https://doi.org/10.1161/ATVBAHA.113.301331

    Article  CAS  PubMed  Google Scholar 

  54. Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C (2011) Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol 224:245–260. https://doi.org/10.1002/path.2858

    Article  CAS  PubMed  Google Scholar 

  55. Luna JD, Chan CC, Derevjanik NL, Mahlow J, Chiu C, Peng B, Tobe T, Campochiaro PA, Vinores SA (1997) Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: Comparison with vascular endothelial growth factor, tumor necrosis factor and interleukin-1β-mediated breakdown. J Neurosci Res 49(3):268–280. https://doi.org/10.1002/(SICI)1097-4547(19970801)49:3%3c268::AID-JNR2%3e3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  56. Zhou TE, Rivera JC, Bhosle VK et al (2016) Choroidal Involution Is Associated with a Progressive Degeneration of the Outer Retinal Function in a Model of Retinopathy of Prematurity: Early Role for IL-1β. Am J Pathol 186(12):3100–3116. https://doi.org/10.1016/j.ajpath.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  57. Beaudry-Richard A, Nadeau-Vallée M, Prairie É et al (2018) Antenatal IL-1-dependent inflammation persists postnatally and causes retinal and sub-retinal vasculopathy in progeny. Sci Rep 8:11875. https://doi.org/10.1038/s41598-018-30087-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172. https://doi.org/10.1378/chest.117.4.1162

    Article  CAS  PubMed  Google Scholar 

  59. Rathi S, Jalali S, Patnaik S et al (2017) Abnormal complement activation and inflammation in the pathogenesis of retinopathy of prematurity. Front Immunol 8:1868. https://doi.org/10.3389/fimmu.2017.01868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N (2019) IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol 10:1618. https://doi.org/10.3389/fimmu.2019.01618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kremlev SG, Palmer C (2005) Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 162(1–2):71–80. https://doi.org/10.1016/j.jneuroim.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  62. Dace DS, Khan AA, Kelly J, Apte RS (2008) Interleukin-10 promotes pathological angiogenesis by regulating macrophage response to hypoxia during development. PLoS ONE 3(10):e3381. https://doi.org/10.1371/journal.pone.0003381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bensen JT, Dawson PA, Mychaleckyj JC, Bowden DW (2001) Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J Interf Cytokine Res 21(11):899–904. https://doi.org/10.1089/107999001753289505

    Article  CAS  Google Scholar 

  64. Qiao H, Sonoda K-H, Ikeda Y, Yoshimura T, Hijioka K, Jo Y-J, Sassa Y, Tsutsumi-Miyahara C, Hata Y, Akira S, Ishibashi T (2007) Interleukin-18 regulates pathological intraocular neovascularization. J Leukoc Biol 81(4):1012–1021. https://doi.org/10.1189/jlb.0506342

    Article  CAS  PubMed  Google Scholar 

  65. Hellgren G, Löfqvist C, Hansen-Pupp I, Gram M, Smith LE, Ley D, Hellström A (2018) Increased postnatal concentrations of pro-inflammatory cytokines are associated with reduced IGF-I levels and retinopathy of prematurity. Growth Horm IGF Res 39:19–24. https://doi.org/10.1016/j.ghir.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  66. Rivera JC, Noueihed B, Madaan A, Lahaie I, Pan J, Belik J, Chemtob S (2017) Tetrahydrobiopterin (BH4) deficiency is associated with augmented inflammation and microvascular degeneration in the retina. J Neuroinflammation 14:181. https://doi.org/10.1186/s12974-017-0955-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brand MP, Heales SJR, Land JM, Clark JB (1995) Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis 18(1):33–39. https://doi.org/10.1007/BF00711370

    Article  CAS  PubMed  Google Scholar 

  68. Edgar KS, Matesanz N, Gardiner TA, Katusic ZS, McDonald DM (2015) Hyperoxia depletes (6R)-5,6,7,8-tetrahydrobiopterin levels in the neonatal retina: Implications for nitric oxide synthase function in retinopathy. Am J Pathol 185(6):1769–1782. https://doi.org/10.1016/j.ajpath.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  69. Powers MR, Davies MH, Eubanks JP (2005) Increased expression of chemokine KC, an interleukin-8 homologue, in a model of oxygen-induced retinopathy. Curr Eye Res 30(4):299–307. https://doi.org/10.1080/02713680590923276

    Article  PubMed  Google Scholar 

  70. Hughes CE, Nibbs RJB (2018) A guide to chemokines and their receptors. FEBS J 285(16):2944–2971. https://doi.org/10.1111/febs.14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghasemi H, Ghazanfari T, Yaraee R, Faghihzadeh S, Hassan ZM (2011) Roles of IL-8 in ocular inflammations: a review. Ocul Immunol Inflamm 19(6):401–412. https://doi.org/10.3109/09273948.2011.618902

    Article  CAS  PubMed  Google Scholar 

  72. Silveira RC, Fortes Filho JB, Procianoy RS (2011) Assessment of the contribution of cytokine plasma levels to detect retinopathy of prematurity in very low birth weight infants. Invest Ophthalmol Vis Sci 52(3):1297–1301. https://doi.org/10.1167/iovs.10

    Article  CAS  PubMed  Google Scholar 

  73. Holm M, Morken TS, Fichorova RN, VanderVeen DK, Allred EN, Dammann O, Leviton A (2017) Systemic inflammation-associated proteins and retinopathy of prematurity in infants born before the 28th week of gestation. Investig Ophthalmol Vis Sci 58(14):6419–6428. https://doi.org/10.1167/iovs.17-21931

    Article  CAS  Google Scholar 

  74. Yao Y, Tsirka SE (2014) Monocyte chemoattractant protein-1 and the blood–brain barrier. Cell Mol Life Sci 71(4):683–697. https://doi.org/10.1007/s00018-013-1459-1

    Article  CAS  PubMed  Google Scholar 

  75. Yoshida S (2003) Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol 73(1):137–144. https://doi.org/10.1189/jlb.0302117

    Article  CAS  PubMed  Google Scholar 

  76. Yu H, Yuan L, Zou Y, Peng L, Wang Y, Li T, Tang S (2014) Serum concentrations of cytokines in infants with retinopathy of prematurity. APMIS 122(9):818–823. https://doi.org/10.1111/apm.12223

    Article  CAS  PubMed  Google Scholar 

  77. Hellgren G, Willett K, Engstrom E, Thorsen P, Hougaard DM, Jacobsson B, Hellstrom A, Lofqvist C (2010) Proliferative retinopathy is associated with impaired increase in BDNF and RANTES expression levels after preterm birth. Neonatology 98(4):409–418. https://doi.org/10.1159/000317779

    Article  CAS  PubMed  Google Scholar 

  78. Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96(12):1788–1795. https://doi.org/10.1038/sj.bjc.6603813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rashid K, Akhtar-Schaefer I, Langmann T (2019) Microglia in retinal degeneration. Front Immunol 10:1975. https://doi.org/10.3389/fimmu.2019.01975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. https://doi.org/10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044. https://doi.org/10.1038/ni.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Di ZY, Yoshida S, Peng YQ, Kobayashi Y, Zhang LS, Tang LS (2017) Diverse roles of macrophages in intraocular neovascular diseases: a review. Int J Ophthalmol 10(12):1902–1908. https://doi.org/10.18240/ijo.2017.12.18

    Article  Google Scholar 

  83. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17(1):109–118. https://doi.org/10.1007/s10456-013-9381-6

    Article  CAS  PubMed  Google Scholar 

  84. Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72(21):4111–4126. https://doi.org/10.1007/s00018-015-1995-y

    Article  CAS  PubMed  Google Scholar 

  85. Ribatti D (2017) The contribution of immune cells to angiogenesis in inflammation and tumor growth. Inflammation and angiogenesis. Springer, Cham, pp 27–84

    Chapter  Google Scholar 

  86. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185. https://doi.org/10.1002/path.4133

    Article  CAS  PubMed  Google Scholar 

  87. Chen S, Yang J, Wei Y, Wei X (2020) Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol 17:36–49. https://doi.org/10.1038/s41423-019-0315-0

    Article  CAS  PubMed  Google Scholar 

  88. Ponomarev ED, Veremeyko T, Weiner HL (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61(1):91–103. https://doi.org/10.1002/glia.22363

    Article  PubMed  Google Scholar 

  89. Zhou Y, Yoshida S, Nakao S, Yoshimura T, Kobayashi Y, Nakama T, Kubo Y, Miyawaki K, Yamaguchi M, Ishikawa K, Oshima Y, Akashi K, Ishibashi T (2015) M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Investig Ophthalmol Vis Sci 56(8):4767–4777. https://doi.org/10.1167/iovs.14-16012

    Article  Google Scholar 

  90. Hartnett ME, Cotten CM (2015) Genomics in the neonatal nursery: focus on ROP. Semin Perinatol 39(8):604–610. https://doi.org/10.1053/j.semperi.2015.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bizzarro MJ, Hussain N, Jonsson B, Feng R, Ment LR, Gruen JR, Zhang H, Bhandari V (2006) Genetic susceptibility to retinopathy of prematurity. Pediatrics 118(5):1858–1863. https://doi.org/10.1542/peds.2006-1088

    Article  PubMed  Google Scholar 

  92. Ortega-Molina JM, Anaya-Alaminos R, Uberos-Fernández J, Solans-Pérez De Larraya A, Chaves-Samaniego MJ, Salgado-Miranda A, Piñar-Molina R, Jerez-Calero A, García-Serrano JL (2015) Genetic and environmental influences on retinopathy of prematurity. Mediators Inflamm 2015:764159. https://doi.org/10.1155/2015/764159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Van Wijngaarden P, Coster DJ, Brereton HM, Gibbins IL, Williams KA (2005) Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. Investig Ophthalmol Vis Sci 46(4):1445–1452. https://doi.org/10.1167/iovs.04-0708

    Article  Google Scholar 

  94. Floyd BNI, Leske DA, Wren SME, Mookadam M, Fautsch MP, Holmes JM (2005) Differences between rat strains in models of retinopathy of prematurity. Mol Vis 11:524–530

    CAS  PubMed  Google Scholar 

  95. Saunders RA, Donahue ML, Christmann LM, Pakalnis AV, Tung B, Hardy RJ, Phelps DL (1997) Racial variation in retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Arch Ophthalmol 115(5):604–608. https://doi.org/10.1001/archopht.1997.01100150606005

    Article  CAS  PubMed  Google Scholar 

  96. Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ (2005) Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics 115(4):990–996. https://doi.org/10.1542/peds.2004-1309

    Article  PubMed  Google Scholar 

  97. Schaffer DB, Palmer EA, Plotsky DF, Metz HS, Flynn JT, Tung B, Hardy RJ (1993) Prognostic factors in the natural course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 100(2):230–237. https://doi.org/10.1016/S0161-6420(93)31665-9

    Article  CAS  PubMed  Google Scholar 

  98. Yang MB, Donovan EF, Wagge JR (2006) Race, Gender, and Clinical Risk Index for Babies (CRIB) Score as predictors of severe retinopathy of prematurity. J AAPOS 10(3):253–261. https://doi.org/10.1016/j.jaapos.2006.01.004

    Article  PubMed  Google Scholar 

  99. Aralikatti AKV, Mitra A, Denniston AKO, Haque MS, Ewer AK, Butler L (2010) Is ethnicity a risk factor for severe retinopathy of prematurity? Arch Dis Child Fetal Neonatal Ed 95(3):F174–F176. https://doi.org/10.1136/adc.2009.160366

    Article  PubMed  Google Scholar 

  100. Janevic T, Zeitlin J, Auger N, Egorova NN, Hebert P, Balbierz A, Howell EA (2018) Association of race/ethnicity with very preterm neonatal morbidities. JAMA Pediatr 172(11):1061–1069. https://doi.org/10.1001/jamapediatrics.2018.2029

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lang DM, Blackledge J, Arnold RW (2005) Is Pacific race a retinopathy of prematurity risk factor? Arch Pediatr Adolesc Med 159(8):771–773. https://doi.org/10.1001/archpedi.159.8.771

    Article  PubMed  Google Scholar 

  102. Hyland RM, Komlósi K, Alleman BW, Tolnai M, Wood LM, Bell EF, Ertl T (2013) Infantile hemangiomas and retinopathy of prematurity: clues to the regulation of vasculogenesis. Eur J Pediatr 172(6):803–809. https://doi.org/10.1007/s00431-013-1966-y

    Article  PubMed  PubMed Central  Google Scholar 

  103. Léauté-Labrèze C, de la Roque ED, Hubiche T, Boralevi F, Thambo J-B, Taïeb A (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358(24):2649–2651. https://doi.org/10.1056/nejmc0708819

    Article  PubMed  Google Scholar 

  104. Krowchuk DP, Frieden IJ, Mancini AJ et al (2019) Clinical practice guideline for the management of infantile hemangiomas. Pediatrics 143(1):e20183475. https://doi.org/10.1542/peds.2018-3475

    Article  PubMed  Google Scholar 

  105. Filippi L, Cavallaro G, Berti E et al (2019) Propranolol 0.2% eye micro-drops for retinopathy of prematurity: a prospective phase IIb study. Front Pediatr 7:180. https://doi.org/10.3389/fped.2019.00180

    Article  PubMed  PubMed Central  Google Scholar 

  106. Van Sorge AJ, Termote JUM, Kerkhoff FT, Van Rijn LJ, Simonsz HJ, Peer PGM, Schalij-Delfos NE (2014) Nationwide inventory of risk factors for retinopathy of prematurity in the netherlands. J Pediatr 164(3):494-498.e1. https://doi.org/10.1016/j.jpeds.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  107. Ying GS, Quinn GE, Wade KC, Repka MX, Baumritter A, Daniel E (2015) Predictors for the development of referral-warranted retinopathy of prematurity in the telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study. JAMA Ophthalmol 133(3):304–311. https://doi.org/10.1001/jamaophthalmol.2014.5185

    Article  PubMed  PubMed Central  Google Scholar 

  108. Slidsborg C, Jensen A, Forman JL, Rasmussen S, Bangsgaard R, Fledelius HC, Greisen G, La Cour M (2016) Neonatal risk factors for treatment-demanding retinopathy of prematurity: a Danish National Study. Ophthalmology 123(4):796–803. https://doi.org/10.1016/j.ophtha.2015.12.019

    Article  PubMed  Google Scholar 

  109. Lundgren P, Kistner A, Andersson EM, Pupp IH, Holmström G, Ley D, Niklasson A, Smith LEH, Wu C, Hellström A, Löfqvist C (2014) Low birth weight is a risk factor for severe retinopathy of prematurity depending on gestational age. PLoS ONE 9(10):e109460. https://doi.org/10.1371/journal.pone.0109460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Palmer EA, Flynn JT, Hardy RJ et al (1991) Incidence and early course of retlnonathy of prematurity. Ophthalmology 98(11):1628–1640. https://doi.org/10.1016/S0161-6420(91)32074-8

    Article  CAS  PubMed  Google Scholar 

  111. Chiang MF, Arons RR, Flynn JT, Starren JB (2004) Incidence of retinopathy of prematurity from 1996 to 2000: Analysis of a comprehensive New York state patient database. Ophthalmology 111(7):1317–1325. https://doi.org/10.1016/j.ophtha.2003.10.030

    Article  PubMed  Google Scholar 

  112. Dailey WA, Gryc W, Garg PG, Drenser KA (2015) Frizzled-4 variations associated with retinopathy and intrauterine growth retardation: a potential marker for prematurity and retinopathy. Ophthalmology 122(9):1917–1923. https://doi.org/10.1016/j.ophtha.2015.05.036

    Article  PubMed  Google Scholar 

  113. Sızmaz S, Yonekawa Y, Trese MT (2015) Familial exudative vitreoretinopathy. Turk J Ophthalmol 45(4):164–168. https://doi.org/10.4274/tjo.67699

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chen ZY, Battinelli EM, Fielder A, Bundey S, Sims K, Breakefield XO, Craig IW (1993) A mutation in the norrie disease gene (NDP) associated with X linked familial exudative vitreoretinopathy. Nat Genet 5(2):180–183. https://doi.org/10.1038/ng1093-180

    Article  CAS  PubMed  Google Scholar 

  115. Li Y, Li J, Zhang X, Peng J, Li J, Zhao P, Armenti ST (2020) Identification of gene mutations in atypical retinopathy of prematurity cases. J Ophthalmol 2020:4212158. https://doi.org/10.1155/2020/4212158

    Article  PubMed  PubMed Central  Google Scholar 

  116. John VJ, McClintic JI, Hess DJ, Berrocal AM (2016) Retinopathy of prematurity versus familial exudative vitreoretinopathy: report on clinical and angiographic findings. Ophthalmic Surg Lasers Imaging Retin 47(1):14–19. https://doi.org/10.3928/23258160-20151214-02

    Article  Google Scholar 

  117. Kandasamy Y, Hartley L, Rudd D, Smith R (2017) The association between systemic vascular endothelial growth factor and retinopathy of prematurity in premature infants: a systematic review. Br J Ophthalmol 101(1):21–24. https://doi.org/10.1136/bjophthalmol-2016-308828

    Article  PubMed  Google Scholar 

  118. Nguyen QD, De Falco S, Behar-Cohen F, Lam WC, Li X, Reichhart N, Ricci F, Pluim J, Li WW (2018) Placental growth factor and its potential role in diabetic retinopathy and other ocular neovascular diseases. Acta Ophthalmol 96:e1–e9. https://doi.org/10.1111/aos.13325

    Article  PubMed  Google Scholar 

  119. Pieh C, Agostini H, Buschbeck C, Krüger M, Schulte-Mönting J, Zirrgiebel U, Drevs J, Lagrèze WA (2008) VEGF-A VEGFR-1, VEGFR-2 and Tie2 levels in plasma of premature infants: Relationship to retinopathy of prematurity. Br J Ophthalmol 92(5):689–693. https://doi.org/10.1136/bjo.2007.128371

    Article  CAS  PubMed  Google Scholar 

  120. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cooke RW, Drury JA, Mountford R, Clark D (2004) Genetic polymorphisms and retinopathy of prematurity. Investig Ophthalmol Vis Sci 45(6):1712–1715. https://doi.org/10.1167/iovs.03-1303

    Article  Google Scholar 

  122. Ali AA, Hussien NF, Samy RM, Al Husseiny K (2015) Polymorphisms of vascular endothelial growth factor and retinopathy of prematurity. J Pediatr Ophthalmol Strabismus 52(4):245–253. https://doi.org/10.3928/01913913-20150506-02

    Article  PubMed  Google Scholar 

  123. Vannay Á, Dunai G, Bányász I, Szabó M, Vámos R, Treszl A, Hajdú J, Tulassay T, Vásárhelyi B (2005) Association of genetic polymorphisms of vascular endothelial growth factor and risk for proliferative retinopathy of prematurity. Pediatr Res 57(3):396–398. https://doi.org/10.1203/01.PDR.0000153867.80238.E0

    Article  CAS  PubMed  Google Scholar 

  124. Lei XJ, Zhao YX, Qiao T (2018) Influence of polymorphisms in VEGF, ACE, TNF and GST genes on the susceptibility to retinopathy of prematurity among Chinese infants. Int J Ophthalmol 11(9):1451–1457. https://doi.org/10.18240/ijo.2018.09.04

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kaya M, Çokakli M, Berk AT, Yaman A, Yesilirmak D, Kumral A, Atabey N (2013) Associations of VEGF/VEGF-receptor and HGF/c-Met promoter polymorphisms with progression/regression of retinopathy of prematurity. Curr Eye Res 38(1):137–142. https://doi.org/10.3109/02713683.2012.731550

    Article  CAS  PubMed  Google Scholar 

  126. Kusuda T, Hikino S, Ohga S, Kinjo T, Ochiai M, Takahata Y, Tokunaga S, Ihara K, Hata Y, Hara T (2011) Genetic variation of vascular endothelial growth factor pathway does not correlate with the severity of retinopathy of prematurity. J Perinatol 31(4):246–250. https://doi.org/10.1038/jp.2010.111

    Article  CAS  PubMed  Google Scholar 

  127. Shastry BS, Qu X (2007) Lack of association of the VEGF gene promoter (-634 G→C and -460 C→T) polymorphism and the risk of advanced retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 2(9):949–962. https://doi.org/10.1007/s00417-006-0480-6

    Article  CAS  Google Scholar 

  128. Kimura H, Esumi H (2003) Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol 50(1):49–59

    Article  CAS  PubMed  Google Scholar 

  129. Rusai K, Vannay A, Szebeni B, Borgulya G, Fekete A, Vásárhelyi B, Tulassay T, Szabó AJ (2008) Endothelial nitric oxide synthase gene T-786C and 27-bp repeat gene polymorphisms in retinopathy of prematurity. Mol Vis 14:286–290

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nishijima T, Nakayama M, Yoshimura M et al (2007) The endothelial nitric oxide synthase gene -786T/C polymorphism is a predictive factor for reattacks of coronary spasm. Pharmacogenet Genomics 17(8):581–587. https://doi.org/10.1097/01.fpc.0000239978.61841.1a

    Article  CAS  PubMed  Google Scholar 

  131. Taverna MJ, Sola A, Guyot-Argenton C, Pacher N, Bruzzo F, Chevalier A, Slama G, Reach G, Selam JL (2002) eNOS4 polymorphism of the endothelial nitric oxide synthase predicts risk for severe diabetic retinopathy. Diabet Med 19(3):240–245. https://doi.org/10.1046/j.1464-5491.2002.00681.x

    Article  CAS  PubMed  Google Scholar 

  132. Yanamandra K, Napper D, Pramanik A, Bocchini JA, Dhanireddy R (2010) Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants. Ophthalmic Genet 31(4):173–177. https://doi.org/10.3109/13816810.2010.497528

    Article  CAS  PubMed  Google Scholar 

  133. Shastry BS (2013) Endothelial nitric oxide synthase gene promoter polymorphism (T-786C) may be associated with advanced retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 251(9):2251–2253. https://doi.org/10.1007/s00417-012-2231-1

    Article  Google Scholar 

  134. Poggi C, Giusti B, Gozzini E, Sereni A, Romagnuolo I, Kura A, Pasquini E, Abbate R, Dani C, Rogers LK (2015) Genetic contributions to the development of complications in preterm newborns. PLoS ONE 10:e0131741. https://doi.org/10.1371/journal.pone.0131741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Skaper S (2011) Peptide mimetics of neurotrophins and their receptors. Curr Pharm Des 17(25):2704–2718. https://doi.org/10.2174/138161211797415995

    Article  CAS  PubMed  Google Scholar 

  136. Camerino C, Conte E, Cannone M, Caloiero R, Fonzino A, Tricarico D (2016) Nerve growth factor, brain-derived neurotrophic factor and osteocalcin gene relationship in energy regulation, bone homeostasis and reproductive organs analyzed by mrna quantitative evaluation and linear correlation analysis. Front Physiol 7:456. https://doi.org/10.3389/fphys.2016.00456

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sahay AS, Sundrani DP, Joshi SR (2017) Neurotrophins: role in placental growth and development. Vitam Horm 104:243–261. https://doi.org/10.1016/bs.vh.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  138. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B Biol Sci 361(1473):1545–1564. https://doi.org/10.1098/rstb.2006.1894

    Article  CAS  Google Scholar 

  139. Garrido MP, Vera C, Vega M, Quest AFG, Romero C (2018) Metformin prevents nerve growth factor-dependent proliferative and proangiogenic effects in epithelial ovarian cancer cells and endothelial cells. Ther Adv Med Oncol 10:1758835918770984. https://doi.org/10.1177/1758835918770984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lam CT, Yang ZF, Lau CK, Tam KH, Fan ST, Poon RTP (2011) Brain-derived neurotrophic factor promotes tumorigenesis via induction of neovascularization: implication in hepatocellular carcinoma. Clin Cancer Res 17(10):3123–3133. https://doi.org/10.1158/1078-0432.CCR-10-2802

    Article  CAS  PubMed  Google Scholar 

  141. Julio-Pieper M, Lozada P, Tapia V, Vega M, Miranda C, Vantman D, Ojeda SR, Romero C (2009) Nerve growth factor induces vascular endothelial growth factor expression in granulosa cells via a trkA receptor/mitogen-activated protein kinase-extracellularly regulated kinase 2-dependent pathway. J Clin Endocrinol Metab 94(8):3065–3071. https://doi.org/10.1210/jc.2009-0542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J, Chen Y (2017) BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep 15(3):1362–1367. https://doi.org/10.3892/mmr.2017.6110

    Article  CAS  PubMed  Google Scholar 

  143. Hartnett ME, Morrison MA, Smith S et al (2014) Genetic variants associated with severe retinopathy of prematurity in extremely low birth weight infants. Investig Ophthalmol Vis Sci 55(10):6194–6203. https://doi.org/10.1167/iovs.14-14841

    Article  Google Scholar 

  144. Hartnett ME, Capone A Jr (2016) Advances in diagnosis, clinical care, research, and treatment in retinopathy of prematurity. Eye Brain 8:27–29. https://doi.org/10.2147/EB.S105319

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rumajogee P, Madeira A, Vergé D, Hamon M, Miquel MC (2002) Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J Neurochem 83(6):1525–1528. https://doi.org/10.1046/j.1471-4159.2002.01264.x

    Article  CAS  PubMed  Google Scholar 

  146. Popova NK, Ilchibaeva TV, Naumenko VS (2017) Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochem 82(3):308–317. https://doi.org/10.1134/S0006297917030099

    Article  CAS  Google Scholar 

  147. Masson J (2019) Serotonin in retina. Biochimie 161:51–55. https://doi.org/10.1016/j.biochi.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  148. Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ (2020) Pathophysiological implications of hypoxia in human diseases. J Biomed Sci 27(1):63. https://doi.org/10.1186/s12929-020-00658-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fallah J, Rini BI (2019) HIF inhibitors: status of current clinical development. Curr Oncol Rep 21(1):6. https://doi.org/10.1007/s11912-019-0752-z

    Article  PubMed  Google Scholar 

  150. Takeda N, Maemura K, Imai Y, Harada T, Kawanami D, Nojiri T, Manabe I, Nagai R (2004) Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 95(2):146–153. https://doi.org/10.1161/01.RES.0000134920.10128.b4

    Article  CAS  PubMed  Google Scholar 

  151. Morita M, Ohneda O, Yamashita T et al (2003) HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 22(5):1134–1146. https://doi.org/10.1093/emboj/cdg117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mohamed S, Schaa K, Cooper ME, Ahrens E, Alvarado A, Colaizy T, Marazita ML, Murray JC, Dagle JM (2009) Genetic contributions to the development of retinopathy of prematurity. Pediatr Res 65(2):193–197. https://doi.org/10.1203/PDR.0b013e31818d1dbd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hellström A, Smith LEH, Dammann O (2013) Retinopathy of prematurity. Lancet 382(9902):1445–1457. https://doi.org/10.1016/S0140-6736(13)60178-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hellström A, Engström E, Hård AL et al (2003) Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 112(5):1016–1020. https://doi.org/10.1542/peds.112.5.1016

    Article  PubMed  Google Scholar 

  155. Hellström A, Carlsson B, Niklasson A et al (2002) IGF-I is critical for normal vascularization of the human retina. J Clin Endocrinol Metab 87(7):3413–3416. https://doi.org/10.1210/jc.87.7.3413

    Article  PubMed  Google Scholar 

  156. Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88(7):3299–3304. https://doi.org/10.1210/jc.2002-021810

    Article  CAS  PubMed  Google Scholar 

  157. Shastry BS (2007) Assessment of the contribution of insulin-like growth factor I receptor 3174 G→A polymorphism to the progression of advanced retinopathy of prematurity. Eur J Ophthalmol 17(6):950–953. https://doi.org/10.1177/112067210701700613

    Article  CAS  PubMed  Google Scholar 

  158. Balogh Á, Derzbach L, Vannay Á, Vásárhelyi B (2006) Lack of association between insulin-like growth factor I receptor G+3174A polymorphism and retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 244(8):1035–1038. https://doi.org/10.1007/s00417-005-0203-4

    Article  CAS  Google Scholar 

  159. Sato T, Shima C, Kusaka S (2011) Vitreous levels of angiopoietin-1 and angiopoietin-2 in eyes with retinopathy of prematurity. Am J Ophthalmol 151(2):353-357.e1. https://doi.org/10.1016/j.ajo.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  160. Stark A, Dammann C, Nielsen HC, Volpe MV (2018) A pathogenic relationship of bronchopulmonary dysplasia and retinopathy of prematurity? A review of angiogenic mediators in both diseases. Front Pediatr 6:125. https://doi.org/10.3389/fped.2018.00125

    Article  PubMed  PubMed Central  Google Scholar 

  161. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60. https://doi.org/10.1126/science.277.5322.55

    Article  CAS  PubMed  Google Scholar 

  162. Takagi H, Koyama S, Seike H, Oh H, Otani A, Matsumura M, Honda Y (2003) Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Investig Ophthalmol Vis Sci 44(1):393–402. https://doi.org/10.1167/iovs.02-0276

    Article  Google Scholar 

  163. Geva E, Jaffe RB (2000) Role of angiopoietins in reproductive tract angiogenesis. Obstet Gynecol Surv 55(8):511–519. https://doi.org/10.1097/00006254-200008000-00024

    Article  CAS  PubMed  Google Scholar 

  164. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83(3):233–240. https://doi.org/10.1161/01.res.83.3.233

    Article  CAS  PubMed  Google Scholar 

  165. Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83(8):852–859. https://doi.org/10.1161/01.res.83.8.852

    Article  CAS  PubMed  Google Scholar 

  166. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274(22):15732–15739. https://doi.org/10.1074/jbc.274.22.15732

    Article  CAS  PubMed  Google Scholar 

  167. Shastry BS (2009) Lack of association of VEGF (-2578 C → A) and ANG 2 (-35 G → C) gene polymorphisms with the progression of retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 247(6):859–860. https://doi.org/10.1007/s00417-008-0988-z

    Article  Google Scholar 

  168. Bányász I, Bokodi G, Vannay Á, Szebeni B, Treszl A, Vásárhelyi B, Tulassay T, Szabó A (2006) Genetic polymorphisms of vascular endothelial growth factor and angiopoietin 2 in retinopathy of prematurity. Curr Eye Res 31(7–8):685–690. https://doi.org/10.1080/02713680600801123

    Article  CAS  PubMed  Google Scholar 

  169. Dammann O, Brinkhaus MJ, Bartels DB, Dördelmann M, Dressler F, Kerk J, Dörk T, Dammann CEL (2009) Immaturity, perinatal inflammation, and retinopathy of prematurity: a multi-hit hypothesis. Early Hum Dev 85(5):325–329. https://doi.org/10.1016/j.earlhumdev.2008.12.010

    Article  PubMed  Google Scholar 

  170. Taha H, Skrzypek K, Guevara I et al (2010) Role of heme oxygenase-1 in human endothelial cells: lesson from the promoter allelic variants. Arterioscler Thromb Vasc Biol 30(8):1634–1641. https://doi.org/10.1161/ATVBAHA.110.207316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sarlos S, Wilkinson-Berka JL (2005) The renin-angiotensin system and the developing retinal vasculature. Investig Ophthalmol Vis Sci 46(3):1069–1077. https://doi.org/10.1167/iovs.04-0885

    Article  Google Scholar 

  172. Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, Skinner SL, Wilkinson-Berka JL (2000) Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Hypertension 36(6):1099–1104. https://doi.org/10.1161/01.HYP.36.6.1099

    Article  CAS  PubMed  Google Scholar 

  173. Haider MZ, Devarajan LV, Al-Essa M, Kumar H (2002) Angiotensin-converting enzyme gene insertion/deletion polymorphism in Kuwaiti children with retinopathy of prematurity. Biol Neonate 82(2):84–88. https://doi.org/10.1159/000063092

    Article  CAS  PubMed  Google Scholar 

  174. Spiegler J, Gilhaus A, König IR et al (2009) Polymorphisms in the renin-angiotensin system and outcome of very-low-birthweight infants. Neonatology 97(1):10–14. https://doi.org/10.1159/000226602

    Article  CAS  PubMed  Google Scholar 

  175. Cockle JV, Gopichandran N, Walker JJ, Levene MI, Orsi NM (2007) Matrix metalloproteinases and their tissue inhibitors in preterm perinatal complications. Reprod Sci 14(7):629–645. https://doi.org/10.1177/1933719107304563

    Article  CAS  PubMed  Google Scholar 

  176. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839. https://doi.org/10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  177. Zhong S, Khalil RA (2019) A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem Pharmacol 164:188–204. https://doi.org/10.1016/j.bcp.2019.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weskamp G, Mendelson K, Swendeman S et al (2010) Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ Res 106(5):932–940. https://doi.org/10.1161/CIRCRESAHA.109.207415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Guaiquil VH, Hewing NJ, Chiang MF, Rosenblatt MI, Chan RVP, Blobel CP (2013) A murine model for retinopathy of prematurity identifies endothelial cell proliferation as a potential mechanism for plus disease. Investig Ophthalmol Vis Sci 54(8):5294–5302. https://doi.org/10.1167/iovs.12-11492

    Article  CAS  Google Scholar 

  180. Kondo H, Kusaka S, Yoshinaga A, Uchio E, Tawara A, Tahira T (2013) Genetic variants of FZD4 and LRP5 genes in patients with advanced retinopathy of prematurity. Mol Vis 19:476–485

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hutcheson KA, Paluru PC, Bernstein SL, Koh J, Rappaport EF, Leach RA, Young TL (2005) Norrie disease gene sequence variants in an ethnically diverse population with retinopathy of prematurity. Mol Vis 11:501–508

    CAS  PubMed  Google Scholar 

  182. Haider MZ, Devarajan LV, Al-Essa M, Kumar H (2002) A C597–>A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants. J Biomed Sci 9(4):365–370. https://doi.org/10.1159/000065008

    Article  CAS  PubMed  Google Scholar 

  183. Shastry BS, Pendergast SD, Hartzer MK, Liu X, Trese MT (1997) Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity. Arch Ophthalmol 115(5):651–655. https://doi.org/10.1001/archopht.1997.01100150653015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Ana Carolina Santos for her support in this work.

Funding

This work was supported by the Laboratório de Genética and the Instituto de Saúde Ambiental (ISAMB) of the Faculdade de Medicina of Universidade de Lisboa and the Instituto de Investigação Científica Bento da Rocha Cabral. The writing of the manuscript was also supported by funds from Fundação para a Ciência e a Tecnologia to ISAMB (ref. UIDB/04295/2020 and UIDP/04295/2020).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Mariza Fevereiro-Martins. Mariza Fevereiro-Martins and Manuel Bicho had the idea for the article. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariza Fevereiro-Martins.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fevereiro-Martins, M., Guimarães, H., Marques-Neves, C. et al. Retinopathy of prematurity: contribution of inflammatory and genetic factors. Mol Cell Biochem 477, 1739–1763 (2022). https://doi.org/10.1007/s11010-022-04394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04394-4

Keywords

Navigation