Skip to main content

Molecular Mechanisms in the Pathogenesis of Retinopathy of Prematurity (ROP)

  • Chapter
  • First Online:
Genetics of Ocular Diseases
  • 631 Accesses

Abstract

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. Neovascularization of retina in ROP eyes is a result of complex mechanisms that involve plethora of risk factors; however, the exact pathophysiology is still not clear. Even in the absence of risk factors, the disease progress to severe conditions. Thus, understanding the role of cellular molecules/events involved in ROP pathogenesis is very important to check the disease progression. Many studies have focused on investigating the role of cellular macromolecules and oxidative stress in ROP and their functional validations. The aim of this chapter is to discuss the role of various genes, RNA, proteins, lipids, and oxidative stress in physiological mechanism of normal retinal vascularization and various pathological changes that can lead to neovascularization of retina. The identification of such molecular mechanisms involved in neovascularization can help to find out novel therapeutic targets for an effective disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGTR1 :

Angiotensin II receptor type 1

Ang2 :

Angiopoietin-2

ANGPT2 :

Angiopoietin 2 gene

BDNF :

Brain-derived neurotrophic factor

BH4:

Tetrahydrobiopterin

BRB:

Blood–retinal barrier

BW:

Birth weight

C3 :

Complement C3

CETP :

Cholesteryl Ester Transfer Protein

CFB :

Complement Factor B

CFH :

Complement Factor H

CXCR4 :

C-X-C Motif Chemokine Receptor 4

CYP:

Cytochrome P450

DNA:

Deoxyribonucleic acid

EEQs:

Epoxyeicostetraenoic acid

EPA:

Eicosapentaenoic acid

EPAS1 :

Endothelial PAS domain-containing protein 1

EPO:

Erythropoietin

EPOR:

Erythropoietin receptor

FBLN5 :

Fibulin 5

FEVR:

Familial exudative vitreoretinopathy

FLT1:

fms-related tyrosine kinase-1

FZD:

Frizzled

FZD4 :

Frizzled 4

GA:

Gestational age

GP1BA :

Glycoprotein Ib-alpha

GPX:

Glutathione peroxidase

H2AFX :

H2A histone family member X

HIF-1:

Hypoxia-induced growth factor-1

IFN:

Interferons

IGF-1:

Insulin-like growth factors

IHH :

Indian Hedgehog Signaling Molecule

IL-1ra:

Interleukin-1 receptor antagonist

IL6:

Interleukin 6

IL8:

Interleukin 8

JAK:

Janus kinases

KDR:

Kinase insert domain receptor

Keap1:

Kelch-like ECH-associated protein 1

LRP5 :

Low-density lipoprotein receptor-related protein 5

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MCP-1:

Monocyte chemotactic protein 1

MIP-1a :

Macrophage Inflammatory Proteins

miRNA:

Micro RNA

MMP2 :

Matrix metallopeptidase 2

MMP9:

Matrix metallopeptidase 9

MMTV:

Mouse mammary tumor virus

mRNA:

Messenger RNAs

NADPH:

Nicotinamide adenine dinucleotide phosphate

NDP :

Norrie Disease Protein

NOS:

Nitric oxide synthase

Nrf2:

Nuclear factor erythroid 2-like 2

OIR:

Oxidative stress-induced retinopathy

p62:

p62/SQSTM1

PDGF :

Platelet-derived growth factor

PI3K:

Phosphoinisitol-3-kinase

PIGF:

Placental growth factor

PMN:

Polymorphonuclear neutrophils

Prx:

Peroxiredoxins

PUFAs:

Polyunsaturated fatty acids

RANTES:

Regulated upon Activation, Normal T Cell Expressed and Presumably secreted

RNA:

Ribonucleic Acid

ROI:

Reactive Oxygen Intermediates

ROP:

Retinopathy of prematurity

ROS:

Reactive oxygen species

SDF-1 :

Stromal cell-derived factor-1

SNP:

Single nucleotide polymorphism

STAT:

Signal transducer and activator of transcription proteins

TBX5 :

T-Box Transcription Factor 5

TGFβ1:

Transforming growth factor beta-1

TNFα:

Tumor necrosis factor alpha

TSPAN12 :

Tetraspanin-12

UTR:

Untranslated Region

VEGF:

Vascular endothelial growth factor

VEGFR1 :

Vascular endothelial growth factor receptor 1

VEGFR2:

Vascular endothelial growth factor receptor 2

VHL:

Von Hippel—Lindau protein

References

  1. Balakrishnan U, Shaik S, Manian N, Muthukumar M, Thomas M, Amboiram P, et al. Screening based on incidence of severe retinopathy of prematurity in a tertiary care center in India: are Indian infants different? Int J Contemp Pediatr. 2016;3(3):847–53. https://doi.org/10.18203/2349-3291.ijcp20162263.

    Article  Google Scholar 

  2. Hartnett ME. Pathophysiology and mechanisms of severe retinopathy of prematurity. Opthalmology. 2015;122:200–10. https://doi.org/10.1016/j.ophtha.2014.07.050.

    Article  Google Scholar 

  3. Kim SJ, Port AD, Swan R, Campbell JP, Chan RVP, Chiang MF. Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv Opthalmol. 2018;63:618–37. https://doi.org/10.1016/j.survophthal.2018.04.002.

    Article  Google Scholar 

  4. Swan R, Kim SJ, Campbell JP, Chan RVP, Sonmez K, Taylor KD, et al. The genetics of retinopathy of prematurity: a model for neovascular retinal disease. Ophthalmol Retina. 2018;2:949–62. https://doi.org/10.1016/j.oret.2018.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saunders RA, Donahue ML, Christmann LM, Pakalnis AV, Tung B, Hardy RJ, et al. Racial variation in retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Arch Ophthalmol. 1997;115:604–8. https://doi.org/10.1001/archopht.1997.01100150606005.

    Article  CAS  PubMed  Google Scholar 

  6. Hussain N, Clive J, Bhandari V. Current incidence of retinopathy of prematurity, 1989–1997. Pediatrics. 1999;104:e26. https://doi.org/10.1542/peds.104.3.e26.

    Article  CAS  PubMed  Google Scholar 

  7. Tommiska V, Heinonen K, Ikonen S, Kero P, Pokela ML, Renlund M, et al. A national short-term follow-Up study of extremely low birth weight infants born in Finland in 1996-1997. Pediatrics. 2001;107:E2. https://doi.org/10.1542/peds.107.1.e2.

    Article  CAS  PubMed  Google Scholar 

  8. Larsson E, Carle-Petrelius B, Cernerud G, Wallin A, Holmström G. Incidence of ROP in two consecutive Swedish population based studies. Br J Ophthalmol. 2002;86:1122–6. https://doi.org/10.1136/bjo.86.10.1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowe T, Nyamai L, Ademola-Popoola D, Amphornphruet A, Anzures R, Cernichiaro-Espinosa LA, et al. The current state of retinopathy of prematurity in India, Kenya, Mexico, Nigeria, Philippines, Romania, Thailand, and Venezuela. Digit J Ophthalmol. 2019;25(4):49–58. https://doi.org/10.5693/djo.01.2019.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand neonatal network. Pediatrics. 2005;115:990–6. https://doi.org/10.1542/peds.2004-1309.

    Article  PubMed  Google Scholar 

  11. Shastry BS. Genetic susceptibility to advanced retinopathy of prematurity (ROP). J Biomed Sci. 2010;17(1):69. https://doi.org/10.1186/1423-0127-17-69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holmstrom G, Wijngaarden PV, Coster DJ, Williams KA. Genetic susceptibility to retinopathy of prematurity: the evidence from clinical and experimental animal studies. Br J Ophthalmol. 2007;91(12):1704–8. https://doi.org/10.1136/bjo.2007.117283.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bizzarro MJ, Hussain N, Jonsson B, Feng R, Ment LR, Gruenet JR, et al. Genetic susceptibility to retinopathy of prematurity. Pediatrics. 2006;118(5):1858–63. https://doi.org/10.1542/peds.2006-1088.

    Article  PubMed  Google Scholar 

  14. Gow J, Oliver GL. Familial exudative vitreoretinopathy. An expanded view. Arch Ophthalmol. 1971;86(2):150–5. https://doi.org/10.1001/archopht.1971.01000010152007.

    Article  CAS  PubMed  Google Scholar 

  15. Shastry BS, Trese MT. Familial exudative vitreoretinopathy: further evidence for genetic heterogeneity. Am J Med Genet. 1997;69(2):217–8. https://doi.org/10.1002/(sici)1096-8628(19970317)69:2<217::aid-ajmg19>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  16. Plager DA, Orgel IK, Ellis FD, Hartzer M, Trese MT, Shastry BS. X-linked recessive familial exudative vitreoretinopathy. Am J Ophthalmol. 1992;114(2):145–8. https://doi.org/10.1016/s0002-9394(14)73977-7.

    Article  CAS  PubMed  Google Scholar 

  17. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305. https://doi.org/10.1101/gad.11.24.3286.

    Article  CAS  PubMed  Google Scholar 

  18. Kirikoshi H, Sagara N, Koike J, Tanaka K, Sekihara H, Hirai M, et al. Molecular cloning and characterization of human Frizzled-4 on chromosome 11q14-q21. Biochem Biophys Res Commun. 1999;264(3):955–61. https://doi.org/10.1006/bbrc.1999.1612.

    Article  CAS  PubMed  Google Scholar 

  19. Robitaille J, MacDonald ML, Kaykas A, Sheldahl LC, Zeisler J, Dubé MP, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet. 2002;32(2):326–30. https://doi.org/10.1038/ng957.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell. 2004;116(6):883–95. https://doi.org/10.1016/s0092-8674(04)00216-8.

    Article  CAS  PubMed  Google Scholar 

  21. Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, et al. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization [published correction appears in Cell. 2010 Apr 2;141(1):191]. Cell. 2009;139(2):285–98. https://doi.org/10.1016/j.cell.2009.07.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacDonald ML, Goldberg YP, Macfarlane J, Samuels ME, Trese MT, Shastry BS. Genetic variants of frizzled-4 gene in familial exudative vitreoretinopathy and advanced retinopathy of prematurity. Clin Genet. 2005;67(4):363–6. https://doi.org/10.1111/j.1399-0004.2005.00408.x.

    Article  CAS  PubMed  Google Scholar 

  23. Ells A, Guernsey DL, Wallace K, Zheng B, Vincer M, Allen A, et al. Severe retinopathy of prematurity associated with FZD4 mutations. Ophthalmic Genet. 2010;31(1):37–43. https://doi.org/10.3109/13816810903479834.

    Article  CAS  PubMed  Google Scholar 

  24. Kondo H, Kusaka S, Yoshinaga A, Uchio E, Tawara A, Tahira T. Genetic variants of FZD4 and LRP5 genes in patients with advanced retinopathy of prematurity. Mol Vis. 2013;19:476–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Drenser KA, Dailey W, Vinekar A, Dalal K, Capone A Jr, Trese MT. Clinical presentation and genetic correlation of patients with mutations affecting the FZD4 gene. Arch Ophthalmol. 2009;127(12):1649–54. https://doi.org/10.1001/archophthalmol.2009.322.

    Article  CAS  PubMed  Google Scholar 

  26. Dailey WA, Gryc W, Garg PG, Drenser KA. Frizzled-4 variations associated with retinopathy and intrauterine growth retardation: a potential marker for prematurity and retinopathy. Ophthalmology. 2015;122(9):1917–23. https://doi.org/10.1016/j.ophtha.2015.05.036.

    Article  PubMed  Google Scholar 

  27. Rathi S, Jalali S, Musada GR, Patnaik S, Balakrishnan D, Hussain A, et al. Mutation spectrum of NDP, FZD4 and TSPAN12 genes in Indian patients with retinopathy of prematurity. Br J Ophthalmol. 2018;102(2):276–81. https://doi.org/10.1136/bjophthalmol-2017-310958.

    Article  PubMed  Google Scholar 

  28. Berger W, van de Pol D, Bächner D, Oerlemans F, Winkens H, Hameister H, et al. An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet. 1996;5(1):51–9. https://doi.org/10.1093/hmg/5.1.51.

    Article  CAS  PubMed  Google Scholar 

  29. Shastry BS, Pendergast SD, Hartzer MK, Liu X, Trese MT. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity. Arch Ophthalmol. 1997;115(5):651–5. https://doi.org/10.1001/archopht.1997.01100150653015.

    Article  CAS  PubMed  Google Scholar 

  30. Haider MZ, Devarajan LV, Al-Essa M, Kumar H. A C597-- > A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants. J Biomed Sci. 2002;9(4):365–70. https://doi.org/10.1007/BF02256593.

    Article  CAS  PubMed  Google Scholar 

  31. Dickinson JL, Sale MM, Passmore A, Wheatley CM, Burdon KP, Craig JE, et al. Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy and retinopathy of prematurity. Clin Exp Ophthalmol. 2006;34(7):682–8. https://doi.org/10.1111/j.1442-9071.2006.01314.x.

    Article  PubMed  Google Scholar 

  32. Hiraoka M, Berinstein DM, Trese MT, Shastry BS. Insertion and deletion mutations in the dinucleotide repeat region of the Norrie disease gene in patients with advanced retinopathy of prematurity. J Hum Genet. 2001;46(4):178–81. https://doi.org/10.1007/s100380170085.

    Article  CAS  PubMed  Google Scholar 

  33. Kim DH, Inagaki Y, Suzuki T, Ioka RX, Yoshioka SZ, Magoori K, et al. A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. J Biochem. 1998;124(6):1072–6. https://doi.org/10.1093/oxfordjournals.jbchem.a022223.

    Article  CAS  PubMed  Google Scholar 

  34. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23. https://doi.org/10.1016/s0092-8674(01)00571-2.

    Article  CAS  PubMed  Google Scholar 

  35. Hiraoka M, Takahashi H, Orimo H, Hiraoka M, Ogata T, Azuma N, et al. Genetic screening of Wnt signaling factors in advanced retinopathy of prematurity. Mol Vis. 2010;16:2572–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nikopoulos K, Gilissen C, Hoischen A, Nouhuys CE, Boonstra FN, Blokland EAW, et al. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet. 2010;86(2):240–7. https://doi.org/10.1016/j.ajhg.2009.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, et al. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell. 2009;139(2):299–311. https://doi.org/10.1016/j.cell.2009.07.048.

    Article  CAS  PubMed  Google Scholar 

  38. Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6(10):801–11. https://doi.org/10.1038/nrm1736.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang T, Sun X, Han J, Han M. Genetic variants of TSPAN12 gene in patients with retinopathy of prematurity. J Cell Biochem. 2019;120(9):14544–51. https://doi.org/10.1002/jcb.28715.

    Article  CAS  PubMed  Google Scholar 

  40. Mohd Khair SZN, Ismail AS, Embong Z, Mohamed Yusoff AA. Detection of FZD4, LRP5 and TSPAN12 genes variants in malay premature babies with retinopathy of prematurity. J Ophthalmic Vision Res. 2019;14(2):171–8. https://doi.org/10.4103/jovr.jovr_210_17.

    Article  Google Scholar 

  41. Garcia-España A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R. Appearance of new tetraspanin genes during vertebrate evolution. Genomics. 2008;91(4):326–34. https://doi.org/10.1016/j.ygeno.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  42. Mintz-Hittner HA, Kennedy KA, Chuang AZ, BEAT-ROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med. 2011;364(7):603–15. https://doi.org/10.1056/NEJMoa1007374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cooke RW, Drury JA, Mountford R, Clark D. Genetic polymorphisms and retinopathy of prematurity. Investig Ophthalmol Vis Sci. 2004;45(6):1712–5. https://doi.org/10.1167/iovs.03-1303.

    Article  Google Scholar 

  44. Ali AA, Hussien NF, Samy RM, Husseiny KA. Polymorphisms of Vascular Endothelial Growth Factor and Retinopathy of Prematurity. J Pediatr Ophthalmol Strabismus. 2015;52(4):245–53. https://doi.org/10.3928/01913913-20150506-02.

    Article  PubMed  Google Scholar 

  45. Vannay A, Dunai G, Bányász I, Szabó M, Vámos R, Treszl A, et al. Association of genetic polymorphisms of vascular endothelial growth factor and risk for proliferative retinopathy of prematurity. Pediatr Res. 2005;57(3):396–8. https://doi.org/10.1203/01.PDR.0000153867.80238.E0.

    Article  CAS  PubMed  Google Scholar 

  46. Kaya M, Çokakli M, Berk AT, Yaman A, Yesilirmak D, Kumral A, et al. Associations of VEGF/VEGF-receptor and HGF/c-Met promoter polymorphisms with progression/regression of retinopathy of prematurity. Curr Eye Res. 2013;38(1):137–42. https://doi.org/10.3109/02713683.2012.731550.

    Article  CAS  PubMed  Google Scholar 

  47. Shastry BS, Qu X. Lack of association of the VEGF gene promoter (−634 G-- > C and − 460 C-- > T) polymorphism and the risk of advanced retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2007;245(5):741–3. https://doi.org/10.1007/s00417-006-0480-6.

    Article  CAS  PubMed  Google Scholar 

  48. Kusuda T, Hikino S, Ohga S, Kinjo T, Ochiai M, Takahata Y, et al. Genetic variation of vascular endothelial growth factor pathway does not correlate with the severity of retinopathy of prematurity. J Perinatol. 2011;31(4):246–50. https://doi.org/10.1038/jp.2010.111.

    Article  CAS  PubMed  Google Scholar 

  49. Semenza GL. Oxygen sensing, homeostasis, and disease [published correction appears in N Engl J Med. 2011 Sep 8;365(10):968]. N Engl J Med. 2011;365(6):537–47. https://doi.org/10.1056/NEJMra1011165.

    Article  CAS  PubMed  Google Scholar 

  50. Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 2015;49:67–81. https://doi.org/10.1016/j.preteyeres.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia AL, Udeh A, Kalahasty K, Hackam AS. A growing field: the regulation of axonal regeneration by Wnt signaling. Neural Regen Res. 2018;13(1):43–52. https://doi.org/10.4103/1673-5374.224359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mohamed S, Schaa K, Cooper ME, Ahrens E, Alvarado A, Colaizy T, et al. Genetic contributions to the development of retinopathy of prematurity. Pediatr Res. 2009;65(2):193–7. https://doi.org/10.1203/PDR.0b013e31818d1dbd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartnett ME, Morrison MA, Smith S, Yanovitch TL, Young TL, Colaizy T, et al. Genetic variants associated with severe retinopathy of prematurity in extremely low birth weight infants. Investig Ophthalmol Vis SciI. 2014;55(10):6194–203. https://doi.org/10.1167/iovs.14-14841.

    Article  Google Scholar 

  54. Rathi S, Jalali S, Patnaik S, Shahulhameed S, Musada GR, Balakrishnan D, et al. Abnormal complement activation and inflammation in the pathogenesis of retinopathy of prematurity. Front Immunol. 2017;8:1868. https://doi.org/10.3389/fimmu.2017.01868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation [published correction appears in Nat Rev. Genet. 2004 Aug;5(8):631]. Nat Rev Genet. 2004;5(7):522–31. https://doi.org/10.1038/nrg1379.

    Article  CAS  PubMed  Google Scholar 

  56. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. https://doi.org/10.1038/cr.2008.282.

    Article  CAS  PubMed  Google Scholar 

  57. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101(1):59–68. https://doi.org/10.1161/CIRCRESAHA.107.153916.

    Article  CAS  PubMed  Google Scholar 

  58. Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C. MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol. 2008;28(14):4609–19. https://doi.org/10.1128/MCB.01652-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reh TA, Hindges R. MicroRNAs in retinal development. Ann Rev Vision Sci. 2018;4:25–44. https://doi.org/10.1146/annurev-vision-091517-034357.

    Article  Google Scholar 

  60. Karali M, Banfi S. Non-coding RNAs in retinal development and function. Hum Genet. 2019;138:957–71. https://doi.org/10.1007/s00439-018-1931-y.

    Article  CAS  PubMed  Google Scholar 

  61. Zuzic M, Rojo Arias JE, Wohl SG, Busskamp V. Retinal miRNA functions in health and disease. Genes. 2019;10:377. https://doi.org/10.3390/genes10050377.

    Article  CAS  PubMed Central  Google Scholar 

  62. Metin T, Dinç E, Görür A, Erdoğan S, Ertekin S, Sarı AA, et al. Evaluation of the plasma microRNA levels in stage 3 premature retinopathy with plus disease: preliminary study. Eye. 2018;32:415–20. https://doi.org/10.1038/eye.2017.193.

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Olson EN. AngiomiRs-Key regulators of angiogenesis. Curr Opinion Genet. 2009;19(3):205–11. https://doi.org/10.1016/j.gde.2009.04.002.

    Article  CAS  Google Scholar 

  64. Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao JC. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol. 2011;91(1):471–7. https://doi.org/10.1016/j.yexmp.2011.04.016.

    Article  CAS  PubMed  Google Scholar 

  65. Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412. https://doi.org/10.1155/2015/549412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med. 2012;367(26):2515–26. https://doi.org/10.1056/NEJMra1208129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H, et al. Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Investig Ophthalmol Vis Sci. 1999;40(1):182–9.

    CAS  Google Scholar 

  68. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A. 1998;95(20):11709–14. https://doi.org/10.1073/pnas.95.20.11709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cavallaro G, Filippi L, Bagnoli P, Marca GL, Cristofori G, Raffaeli G, et al. The pathophysiology of retinopathy of prematurity: an update of previous and recent knowledge. Acta Opthalmologica. 2013;91(1):2–20. https://doi.org/10.1111/aos.12049.

    Article  CAS  Google Scholar 

  70. Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci U S A. 1993;90(19):8915–9. https://doi.org/10.1073/pnas.90.19.8915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6. https://doi.org/10.1038/376062a0.

    Article  CAS  PubMed  Google Scholar 

  72. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992;187(3):1579–86. https://doi.org/10.1016/0006-291x(92)90483-2.

    Article  CAS  PubMed  Google Scholar 

  73. Quinn TP, Peters KG, de Vries C, Ferrare N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A. 1993;90:7533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A. 1995;92(3):905–9. https://doi.org/10.1073/pnas.92.3.905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hellstrom A, Perruzzi C, Ju M, Engström E, Hard AL, Liu JL, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci. 2001;98(10):5804–8. https://doi.org/10.1073/pnas.101113998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hellström A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, Lacerda L, et al. IGF-I is critical for normal vascularization of the human retina. J Clin Endocrinol Metab. 2002;87(7):3413–6. https://doi.org/10.1210/jcem.87.7.8629.

    Article  PubMed  Google Scholar 

  77. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 2002;277(41):38205–11. https://doi.org/10.1074/jbc.M203781200.

    Article  CAS  PubMed  Google Scholar 

  78. Rakic JM, Lambert V, Devy L, Luttun A, Carmeliet P, Claes C, et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Investig Ophthalmol Vis SciI. 2003;44(7):3186–93. https://doi.org/10.1167/iovs.02-1092.

    Article  Google Scholar 

  79. Michels S, Schmidt-Erfurth U, Rosenfeld PJ. Promising new treatments for neovascular age-related macular degeneration. Expert Opin Investig Drugs. 2006;15(7):779–93. https://doi.org/10.1517/13543784.15.7.779.

    Article  CAS  PubMed  Google Scholar 

  80. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2009;2(59):re1. https://doi.org/10.1126/scisignal.259re1.

    Article  PubMed  Google Scholar 

  81. Simpson DAC, Murphy GM, Bhaduri T, Gardiner TA, Archer DB, Stitt AW. Expression of the VEGF gene family during retinal vaso-obliteration and hypoxia. Biochem Biophys Res Commun. 1999;262(2):333–40. https://doi.org/10.1006/bbrc.1999.1201.

    Article  CAS  PubMed  Google Scholar 

  82. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, Mol MD, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–83. https://doi.org/10.1038/87904.

    Article  CAS  PubMed  Google Scholar 

  83. Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietinand erythropoietin receptor in the developing human centralnervous system. Pediatr Res. 1998;43:40–9.

    Article  CAS  PubMed  Google Scholar 

  84. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993;90(9):4304–8. https://doi.org/10.1073/pnas.90.9.4304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang Z, Wang H, Jiang Y, Hartnett ME. VEGFA activates erythropoietin receptor and enhances VEGFR2-mediated pathological angiogenesis. Am J Pathol. 2014;184(4):1230–9. https://doi.org/10.1016/j.ajpath.2013.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sato T, Kusaka S, Shimojo H, Fujikado T. Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology. 2009;116(9):1599–603. https://doi.org/10.1016/j.ophtha.2008.12.023. Epub 2009 Apr 15.

    Article  PubMed  Google Scholar 

  87. Sickel W. Electrical and metabolic manifestations of receptor and higher-order neuron activity in vertebrate retina. In: Arden GB, editor. The visual system. Advances in experimental medicine and biology, vol. 24. Boston: Springer; 1972. p. 101–8. https://doi.org/10.1007/978-1-4684-8231-7_11.

    Chapter  Google Scholar 

  88. Rivera JC, Sapieha P, Joyal JS, Duhamel F, Shao Z, Sitaras N, et al. Understanding retinopathy of prematurity: update on pathogenesis. Neonatology. 2011;100:343–53. https://doi.org/10.1159/000330174.

    Article  CAS  PubMed  Google Scholar 

  89. Hartnett ME. The effects of oxygen stresses on the development of features of severe retinopathy of prematurity: knowledge from the 50/10 OIR model. Documenta ophthalmologica. Adv Ophthalmol. 2010;120(1):25–39. https://doi.org/10.1007/s10633-009-9181-x.

    Article  Google Scholar 

  90. Kaur C, Sivakumar V, Foulds WS, Luu CD, Ling E. Cellular and vascular changes in the retina of neonatal rats after an acute exposure to hypoxia. Investig Ophthalmol Vis SciI. 2009;50(11):5364–74. https://doi.org/10.1167/iovs.09-3552.

    Article  Google Scholar 

  91. Brooks SE, Gu X, Samuel S, Marcus DM, Bartoli M, Huang PL, et al. Caldwell; reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci. 2001;42(1):222–8.

    CAS  PubMed  Google Scholar 

  92. Holmström G, Broberger U, Thomassen P. Neonatal risk factors for retinopathy of prematurity--a population-based study. Acta Ophthalmol Scand. 1998;76(2):204–7. https://doi.org/10.1034/j.1600-0420.1998.760216.x.

    Article  PubMed  Google Scholar 

  93. Lee J, Dammann O. Perinatal infection, inflammation, and retinopathy of prematurity. Semin Fetal Neonatal Med. 2012;17(1):26–9. https://doi.org/10.1016/j.siny.2011.08.007.

    Article  PubMed  Google Scholar 

  94. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–54. https://doi.org/10.1056/NEJM199902113400607.

    Article  CAS  PubMed  Google Scholar 

  95. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, et al. Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol. 2013;33:1881–91. https://doi.org/10.1161/ATVBAHA.113.301331.

    Article  CAS  PubMed  Google Scholar 

  96. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162–72. https://doi.org/10.1378/chest.117.4.1162.

    Article  CAS  PubMed  Google Scholar 

  97. Kremlev SG, Palmer C. Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol. 2005;162:71–80. https://doi.org/10.1016/j.jneuroim.2005.01.010.

    Article  CAS  PubMed  Google Scholar 

  98. Dordelmann M, Kerk J, Dressler F, Brinkhaus MJ, Bartels DB, Dammann CE, et al. Interleukin-10 high producer allele and ultrasound defined periventricular white matter abnormalities in preterm infants: a preliminary study. Neuropediatrics. 2006;37:130–6. https://doi.org/10.1203/PDR.0b013e3181b3b0fa.

    Article  CAS  PubMed  Google Scholar 

  99. Silveira RC, Filho FJB, Procianoy RS. Assessment of the contribution of cytokine plasma levels to detect retinopathy of prematurity in very low birth weight infants. Investig Ophthalmol Vis Sci. 2011;52:1297–301. https://doi.org/10.1167/iovs.10-6279.

    Article  CAS  Google Scholar 

  100. Powers MR, Davies MH, Eubanks JP. Increased expression of chemokine KC, an interleukin-8 homologue, in a model of oxygen-induced retinopathy. Curr Eye Res. 2005;30(4):299–307. https://doi.org/10.1080/02713680590923276.

    Article  PubMed  Google Scholar 

  101. Hellgren G, Willett K, Engstrom E, Thorsen P, Hougaard DM, Jacobsson B, et al. Proliferative retinopathy is associated with impaired increase in BDNF and RANTES expression levels after preterm birth. Neonatology. 2010;98:409–18. https://doi.org/10.1159/000317779.

    Article  CAS  PubMed  Google Scholar 

  102. Yao Y, Tsirka SE. Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci. 2014;71:683–97. https://doi.org/10.1007/s00018-013-1459-1.

    Article  CAS  PubMed  Google Scholar 

  103. Natarajan G, Shankaran S, McDonald SA, Das A, Stoll BJ, Higgins RD, et al. Circulating beta chemokine and MMP 9 as markers of oxidative injury in extremely low birth weight infants. Pediatr Res. 2010;67(1):77–82. https://doi.org/10.1203/pdr.0b013e3181c0b16c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Filomeni G, Zio D, Cocconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88. https://doi.org/10.1038/cdd.2014.150.

    Article  CAS  PubMed  Google Scholar 

  105. Jiong H, Sofia-Iris B, Janina W, Sven Z, Jihong L, Rüdiger P, et al. Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity. J Clin Investig. 2019;129(12):5204–18. https://doi.org/10.1172/JCI123835.

    Article  Google Scholar 

  106. Cristina L, Jose A, Veronica G, Bruce D, Vicente A, Joan C, et al. Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: Role for omega-3 epoxides. Proc Natl Acad Sci U S A. 2015;112(2):536–41. https://doi.org/10.1073/pnas.1422590112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjeet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, T., Patnaik, S., Kumar, S., Kaur, I. (2022). Molecular Mechanisms in the Pathogenesis of Retinopathy of Prematurity (ROP). In: Nema, H.V., Nema, N. (eds) Genetics of Ocular Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-4247-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4247-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4246-3

  • Online ISBN: 978-981-16-4247-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics