Skip to main content

Advertisement

Log in

Screening and identification of phytochemical drug molecules against mutant BRCA1 receptor of breast cancer using computational approaches

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The American Cancer Society claims that breast cancer is the second most significant cause of cancer-related death, with over one million women diagnosed each year. Breast cancer linked to the BRCA1 gene has a significant risk of mortality and recurrence and is susceptible to alteration or over-expression, which can lead to hereditary breast cancer. Given the shortage of effective and possibly curative treatments for breast cancer, the present study combined molecular and computational analysis to find prospective phytochemical substances that can suppress the mutant gene (BRCA1) that causes the disease. Virtual screening and Molecular docking approaches are utilized to find probable phytochemicals from the ZINC database. The 3D structure of mutant BRCA1 protein with the id 3PXB was extracted from the NCBI-PDB. Top 10 phytochemical compounds shortlisted based on molecular docking score between − 11.6 and − 13.0. Following the ADMET properties, only three (ZINC000085490903 = − 12.50, ZINC000085490832 = − 12.44, and ZINC000070454071 = − 11.681) of the 10 selected compounds have drug-like properties. The molecular dynamic simulation study of the top three potential phytochemicals showed stabilized RMSD and RMSF values as compared to the APO form of the BRCA1 receptor. Further, trajectory analysis revealed that approximately similar radius of gyration score tends to the compactness of complex structure, and principal component and cross-correlation analysis suggest that the residues move in a strong correlation. Thermostability of the target complex (B-factor) provides information on the stable energy minimized structure. The findings suggest that the top three ligands show potential as breast cancer inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Feng Y, Spezia M, Huang S et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signalling pathways, genomics, and molecular pathogenesis. Genes Dis 5(2):77–106

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK (2010) Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 1(2):109–126

    PubMed  PubMed Central  Google Scholar 

  3. Petrucelli N, Daly MB, Feldman GL (2010) Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med 12(5):245–259

    Article  CAS  PubMed  Google Scholar 

  4. Deng CX, Scott F (2000) Role of the tumour suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 19(8):1059–1064

    Article  CAS  PubMed  Google Scholar 

  5. Huang RX, Zhou PK (2020) DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 5(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roy R, Chun J, Powell SN (2011) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12(1):68–78

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prakash R, Zhang Y, Feng W, Jasin M (2015) Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7(4):a016600

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34(5):1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng L, Li S, Boyer TG, Lee WH (2000) Lessons learned from BRCA1 and BRCA2. Oncogene 19(53):6159–6175

    Article  CAS  PubMed  Google Scholar 

  10. Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25(43):5864–5874

    Article  CAS  PubMed  Google Scholar 

  11. Mehrgou A, Akouchekian M (2016) The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 30:369

    PubMed  PubMed Central  Google Scholar 

  12. Godet I, Gilkes DM (2017) BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. https://doi.org/10.15761/ICST.1000228

  13. Mersch J, Jackson MA, Park M, Nebgen D, Peterson SK, Singletary C, Arun BK, Litton JK (2015) Erratum: cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121(14):2474–2475

    Article  Google Scholar 

  14. Gaonkar R, Avti PK, Hegde G (2018) Differential antifungal efficiency of geraniol and citral. Nat Prod Commun. https://doi.org/10.1177/1934578X1801301210

    Article  Google Scholar 

  15. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20(18):4331

    Article  CAS  PubMed Central  Google Scholar 

  16. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou HX, Pang X (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 118(4):1691–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang S (2011) Computer-aided drug discovery and development. Methods Mol Biol 716:23–38

    Article  CAS  PubMed  Google Scholar 

  19. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27(15):2083–2088

    Article  CAS  PubMed  Google Scholar 

  21. Elrod P, Zhang J, Yang X et al (2002) Contributions of active site residues to the partial and overall catalytic activities of human S-adenosylhomocysteine hydrolase. Biochemistry 41(25):8134–8142

    Article  CAS  PubMed  Google Scholar 

  22. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  23. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Couch FJ, Weber BL (1996) Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene. Breast Cancer Inf Core Hum Mutat 8(1):8–18

    CAS  Google Scholar 

  25. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmañà J et al (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2(11):1048–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rehman FL, Lord CJ, Ashworth A (2012) The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov 2(11):982–984

    Article  CAS  PubMed  Google Scholar 

  27. Martorana F, Motta G, Pavone G, Motta L, Stella S, Vitale SR, Manzella L, Vigneri P (2021) AKT inhibitors: new weapons in the fight against breast cancer? Front Pharmacol 29(12):546

    Google Scholar 

  28. Aziz D, Portman N, Fernandez KJ, Lee C, Alexandrou S, Llop-Guevara A, Phan Z, Yong A, Wilkinson A, Sergio CM, Ferraro D (2021) Synergistic targeting of BRCA1 mutated breast cancers with PARP and CDK2 inhibition. NPJ Breast Cancer 7(1):1–4

    Article  Google Scholar 

  29. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2020) Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 28(10):1614

    Article  Google Scholar 

  30. Khanduja KL, Kumar S, Varma N, Varma SC, Avti PK, Pathak CM (2008) Enhancement in alpha-tocopherol succinate-induced apoptosis by all-trans-retinoic acid in primary leukemic cells: role of antioxidant defense, Bax and c-myc. Mol Cell Biochem 319(1–2):133–139

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Nisha CM, Silakari C et al (2016) Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc 115(1):3–10

    Article  CAS  PubMed  Google Scholar 

  32. Jayaraman S, Veeraraghavan V, Sreekandan RN, Mohan SK, Suga S, Kamaraj D, Mohandoss S, Koora S (2020) Molecular docking analysis of the BRCA1 protein with compounds from Justica adhatoda L. Bioinformation 16(11):888–892

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prabhavathi H, Dasegowda KR, Renukananda KH, Lingaraju K, Naika HR (2021) Exploration and evaluation of bioactive phytocompounds against BRCA proteins by in silico approach. J Biomol Struct Dyn 39(15):5471–5485

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Khanduja KL, Verma N, Verma SC, Avti PK, Pathak CM (2008) ATRA promotes alpha tocopherol succinate-induced apoptosis in freshly isolated leukemic cells from chronic myeloid leukemic patients. Mol Cell Biochem 307(1–2):109–119

    CAS  PubMed  Google Scholar 

  35. Coquelle N, Green R, Glover JN (2011) Impact of BRCA1 BRCT domain missense substitutions on phosphopeptide recognition. Biochemistry 50(21):4579–4589

    Article  CAS  PubMed  Google Scholar 

  36. Souza PCT, Thallmair S, Conflitti P et al (2020) Protein-ligand binding with the coarse-grained martini model. Nat Commun 11(1):3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lippert T, Rarey M (2009) Fast automated placement of polar hydrogen atoms in protein-ligand complexes. J Cheminform 1(1):1–2

    Article  Google Scholar 

  38. Shih AJ, Telesco SE, Choi SH, Lemmon MA, Radhakrishnan R (2011) Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond-interaction networks in ErbB family kinases. Biochem J 436(2):241–251

    Article  CAS  PubMed  Google Scholar 

  39. Yu W, MacKerell AD Jr (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuhlman B, Bradley P (2019) Advances in protein structure prediction and design. Nat Rev Mol Cell Biol 20(11):681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haftarah A, Wang J (1864) Miao Y (2020) Retrospective ensemble docking of allosteric modulators in an adenosine G-protein-coupled receptor. Biochim Biophys Acta Gen Subj 8:129615

    Google Scholar 

  42. Fataftah H, Karain W (2014) Detecting protein atom correlations using correlation of probability of recurrence. Proteins 82(9):2180–2189

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

One of the authors, Jitender Singh much acknowledges the Indian Council of Medical Research New Delhi, for awarding ICMR˗SRF (Ref. No.: BMI/11(54)/2020, Dated 24/03/2021) for the financial assistance provided.

Author information

Authors and Affiliations

Authors

Contributions

JS performed the study, analyzed and written the manuscript, NS and AC prepared the figures and written the manuscript, PS, AP and BM edited and revised the manuscript PKA Conceptualized, Design, interpretation and written the manuscript.

Corresponding author

Correspondence to Pramod K. Avti.

Ethics declarations

Conflict of interest

All the authors declare no conflict of Interest.

Ethical approval

This is an in silico study and does not require ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Sangwan, N., Chauhan, A. et al. Screening and identification of phytochemical drug molecules against mutant BRCA1 receptor of breast cancer using computational approaches. Mol Cell Biochem 477, 885–896 (2022). https://doi.org/10.1007/s11010-021-04338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04338-4

Keywords

Navigation