Skip to main content

Advertisement

Log in

Enhancement in alpha-tocopherol succinate-induced apoptosis by all-trans-retinoic acid in primary leukemic cells: role of antioxidant defense, Bax and c-myc

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated the possible mechanisms of All-trans retinoic acid (ATRA)-promoted apoptosis induced by α-tocopherol succinate (α-TS) in freshly isolated leukemic cells obtained from chronic myeloid leukemic patients. α-TS at 50 μM concentration significantly decreased superoxide dismutase (SOD) activity and reduced glutathione (GSH) by 29% and 25%, respectively, and increased lipid peroxidation level by 33%. Though 10 μM ATRA did not affect these parameters, it further significantly enhanced α-TS-induced changes. Bax expression in the leukemic cells was increased by treatment with ATRA, α-TS, and their combination to 40%, 240%, and 320%, respectively, without any change in Bcl2 and p53 expression. C-myc was down regulated by treatment with ATRA, α-TS and their combination to 22%, 48.5%, and 52%, respectively. In conclusion, the data reveal that enhancement of α-TS-induced apoptosis by ATRA in leukemic cells was through up regulation of Bax and lipid peroxidation, and down regulation of c-myc and GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neuzil J, Massa H (2005) Hepatic processing determines dual activity of vitamin E succinate, a novel paradigm for a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun 327:1024–1027. doi:10.1016/j.bbrc.2004.12.115

    Article  PubMed  CAS  Google Scholar 

  2. Malafa MP, Neitzel LT (2000) Vitamin E succinate promotes breast cancer tumor dormancy. J Surg Res 93:163–170. doi:10.1006/jsre.2000.5948

    Article  PubMed  CAS  Google Scholar 

  3. Malafa MP, Fokum FD, Smith L, Louis A (2002) Inhibition of angiogenesis and promotion of melanoma dormancy by vitamin E succinate. Ann Surg Oncol 9:1023–1032

    Article  PubMed  Google Scholar 

  4. Barnett KT, Fokum FD, Malafa MP (2002) Vitamin E succinate inhibits colon cancer liver metastases. J Surg Res 106:292–298. doi:10.1006/jsre.2002.6466

    Article  PubMed  CAS  Google Scholar 

  5. Kogure K, Manabe S, Hama S, Tokumura A, Fukuzawa K (2003) Potentiation of anti-cancer effect by intravenous administration of vesiculated alpha-tocopheryl hemisuccinate on mouse melanoma in vivo. Cancer Lett 192:19–24. doi:10.1016/S0304-3835(02)00683-3

    Article  PubMed  CAS  Google Scholar 

  6. Kline K, Yu W, Sanders BG (2001) Vitamin E: mechanism of action as tumor cell growth inhibitor. J Nutr 131:161S–163S

    PubMed  CAS  Google Scholar 

  7. Neuzil J (2002) α-Tocopheryl succinate epitomizes a compound with a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun 293:1309–1313. doi:10.1016/S0006-291X(02)00358-3

    Article  PubMed  CAS  Google Scholar 

  8. Douer D, Koeffler HP (1982) Retinoic acid, inhibition of the clonal growth of human myeloid lueukemia cells. J Clin Invest 69:277–283. doi:10.1172/JCI110450

    Article  PubMed  CAS  Google Scholar 

  9. Kumar S, Khanduja KL, Varma N, Varma S, Avti PK, Pathak CM (2008) ATRA promotes tocopherol succinate-induced apoptosis in freshly isolated leukemic cells from chronic myeloid leukemia patients. Mol Cell Biochem 307:109–119. doi:10.1007/s11010-007-9590-7

    Article  PubMed  CAS  Google Scholar 

  10. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770–7775. doi:10.1074/jbc.273.13.7770

    Article  PubMed  CAS  Google Scholar 

  11. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136. doi:10.1126/science.275.5303.1132

    Article  PubMed  CAS  Google Scholar 

  12. Caspari T (1992) How to activate p53. Curr Biol 10:R315–R317. doi:10.1016/S0960-9822(00)00439-5

    Article  Google Scholar 

  13. Pratt MA, Niu MY (2003) Bcl-2 controls caspase activation following a p53-dependent cyclin D1-induced death signal. J Biol Chem 278:14219–14229. doi:10.1074/jbc.M209650200

    Article  PubMed  CAS  Google Scholar 

  14. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299. doi:10.1016/0092-8674(95)90513-8

    Article  PubMed  CAS  Google Scholar 

  15. Heeg K, Reimann J, Kabelitz D, Hardt C, Wagner H (1985) A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. J Immunol Methods 77:237–246. doi:10.1016/0022-1759(85)90036-5

    Article  PubMed  CAS  Google Scholar 

  16. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:10.1016/0003-2697(79)90738-3

    Article  PubMed  CAS  Google Scholar 

  17. Moron MS, Kepierre JW, Mannervick B (1979) Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–68

    PubMed  CAS  Google Scholar 

  18. Kono Y (1978) Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195. doi:10.1016/0003-9861(78)90479-4

    Article  PubMed  CAS  Google Scholar 

  19. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  20. Van Stijn A, Kok A, Van der Pol MA, Feller N, Roemen GM, Westra AH et al (2003) A flow cytometric method to detect apoptosis-related protein expression in minimal residual disease in acute myeloid leukemia. Leukemia 17:780–786. doi:10.1038/sj.leu.2402885

    Article  PubMed  CAS  Google Scholar 

  21. Lin LM, Li BX, Xia JB, Lin DH, Yang BF (2005) Synergistic effect of all-trans-retinoic acid and arsenic trioxide on growth inhibition and apoptosis in human hepatoma breast cancer, and lung cancer cells in vitro. World J Gastroenterol 11:5633–5637

    PubMed  CAS  Google Scholar 

  22. Fukuzawa K, Kogure K, Morita M, Hama S, Manabe S, Tokumura A (2004) Enhancement of nitric oxide and superoxide generations by alpha-tocopheryl succinate and its apoptotic and anticancer effects. Biochemistry 69:50–57

    PubMed  CAS  Google Scholar 

  23. Kogure K, Hama S, Manabe S, Tokumura A, Fukuzawa K (2002) High cytotoxicity of alpha-tocopheryl hemisuccinate to cancer cells is due to failure of their antioxidative defense systems. Cancer Lett 186:151–156. doi:10.1016/S0304-3835(02)00344-0

    Article  PubMed  CAS  Google Scholar 

  24. Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158–167. doi:10.1002/jcp.10254

    Article  PubMed  CAS  Google Scholar 

  25. Yu W, Sanders BG, Kline K (2003) RRR-a-tocopheryl succinate-induced apoptosis of human breast cancer cells involves Bax translocation to mitochondria. Cancer Res 63:2483–2491

    PubMed  CAS  Google Scholar 

  26. Zhang H, Rosdahl I (2004) Expression profile of p53, p21, bax and bcl-2 proteins in all-trans-retinoic acid treated primary and metastatic melanoma cells. Int J Oncol 25:303–308

    PubMed  CAS  Google Scholar 

  27. Zheng A, Mäntymaa P, Säily M, Siitonen T, Savolainen ER, Koistinen P (1999) An association between mitochondrial function and all-trans retinoic acid-induced apoptosis in acute myeloblastic leukaemia cells. Br J Haematol 105:215–224. doi:10.1111/j.1365-2141.1999.01303.x

    Article  PubMed  CAS  Google Scholar 

  28. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251. doi:10.1016/0092-8674(93)80066-N

    Article  PubMed  CAS  Google Scholar 

  29. Mérad-Saïdoune M, Boitier E, Nicole A, Marsac C, Martinou JC, Sola B et al (1999) Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mitochondrial respiratory dysfunction induced by glutathione depletion. Exp Neurol 158:428–436. doi:10.1006/exnr.1999.7108

    Article  PubMed  Google Scholar 

  30. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, Linseman DA (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282:29296–29304. doi:10.1074/jbc.M702853200

    Article  PubMed  CAS  Google Scholar 

  31. Neuzil J, Tomasetti M, Mellick AS, Alleva R, Salvatore BA, Birringer M et al (2004) Vitamin E analogues: a new class of inducers of apoptosis with selective anti-cancer effect. Curr Cancer Drug Targets 4:267–284. doi:10.2174/1568009043332943

    Article  Google Scholar 

  32. Neuzil J, Zhao M, Ostermann G, Sticha M, Gellert N, Weber C et al (2002) a-Tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochem J 362:709–715. doi:10.1042/0264-6021:3620709

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Khanduja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanduja, K.L., Kumar, S., Varma, N. et al. Enhancement in alpha-tocopherol succinate-induced apoptosis by all-trans-retinoic acid in primary leukemic cells: role of antioxidant defense, Bax and c-myc. Mol Cell Biochem 319, 133–139 (2008). https://doi.org/10.1007/s11010-008-9886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9886-2

Keywords

Navigation