Skip to main content

Advertisement

Log in

Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC). The transcription factor TWIST1, as EMT and stemness marker, regulates MMPs expression and is identified as the downstream target of CD44. In this study, we aimed to investigate the probable interplay between the expression of key genes contributing to ESCC development, including MMP-13, TWIST1, and CD44 with clinical features for introducing novel diagnostic and therapeutic targets in the disease. The gene expression profiling of MMP-13, TWIST1, and CD44 was performed using quantitative real-time PCR in tumor tissues from 50 ESCC patients compared to corresponding margin non-tumoral tissues. Significant overexpression of MMP-13, CD44S, CD44V3, CD44V6, and TWIST1 were observed in 74%, 36%, 44%, 44%, and 52% of ESCC tumor samples, respectively. Overexpression of MMP-13 was associated with stage of tumor progression, metastasis, and tumor location (P < 0.05). There was a significant correlation between TWIST1 overexpression and grade (P < 0.05). Furthermore, overexpression of CD44 variants was associated with stage of tumor progression, grade, tumor invasion, and location (P < 0.05). The results indicated the significant correlation between concomitant expression of MMP-13/TWIST1, TWIST1/CD44, and CD44/MMP-13 with each other in a variety of clinicopathological traits, including depth of tumor invasion, tumor location, stage of tumor, and lymph node involvement in ESCC tissue samples (P < 0.05). Collectively, our results indicate that the TWIST1-CD44-MMP-13 axis is involved in tumor aggressiveness, proposing these genes as regulators of EMT, diagnostic markers, and therapeutic targets in ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ESCC:

Esophageal squamous cell carcinoma

ECM:

Extracellular matrix

MMPs:

Matrix metalloproteinases

BM:

Basement membrane

TIMPs:

Tissue inhibitors of metalloproteinase

MMP-1:

Collagenase-3

TNF-α:

Tumor necrosis factor

IL-1:

Interleukin-1

EGF:

Epidermal growth factor

HGF:

Hepatocyte growth factor

FGFs:

Fibroblast growth factors

TGF:

Transforming growth factor

EMT:

Epithelial-mesenchymal transition

TFs:

Transcription factors

EC:

Esophageal cancer

CSCs:

Cancer stem cells

MUC1:

Mucin 1

MMP-14:

MT1-MMP

References

  1. Chattopadhyay I (2014) A brief overview of genetics of esophageal squamous cell carcinoma. J Cell Sci Molecul Biol 1:103

    Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  4. Morales CP, Souza RF, Spechler SJ (2002) Hallmarks of cancer progression in Barrett’s oesophagus. Lancet 360(9345):1587–1589

    Article  PubMed  Google Scholar 

  5. Elnemr A et al (2003) Expression of collagenase-3 (matrix metalloproteinase-13) in human gastric cancer. Gastric Cancer 6(1):0030–0038

    Article  CAS  Google Scholar 

  6. Walker C, Mojares E, del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19(10):3028

    Article  PubMed Central  Google Scholar 

  7. Ala-aho R, Kähäri V-M (2005) Collagenases in cancer. Biochimie 87(3–4):273–286

    Article  CAS  PubMed  Google Scholar 

  8. Kerkelä E, Saarialho-Kere U (2003) Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12(2):109–125

    Article  PubMed  Google Scholar 

  9. Hadler-Olsen E, Winberg J-O, Uhlin-Hansen L (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biol 34(4):2041–2051

    Article  CAS  Google Scholar 

  10. Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting overlapping and compensatory functions. BBA Mol Cell Res 1:103–120

    Google Scholar 

  11. Jung YS et al (2012) TIMP-1 induces an EMT-like phenotypic conversion in MDCK cells independent of its MMP-inhibitory domain. PLoS ONE 7(6):e38773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leeman M, McKay J, Murray GI (2002) Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal cancer. J Clin Pathol 55(10):758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiao XL et al (2014) Clinical significance of serum matrix metalloproteinase-13 levels in patients with esophageal squamous cell carcinoma (ESCC). Eur Rev Med Pharmacol Sci 18(4):509–515

    PubMed  Google Scholar 

  14. Liacini A et al (2003) Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp Cell Res 288(1):208–217

    Article  CAS  PubMed  Google Scholar 

  15. Nisticò P, Bissell MJ, Radisky DC (2012) Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol 4(2):a011908

    Article  PubMed  PubMed Central  Google Scholar 

  16. Forghanifard MM et al (2017) Negative regulatory role of TWIST1 on SNAIL gene expression. Pathol Oncol Res 23(1):85–90

    Article  CAS  PubMed  Google Scholar 

  17. Julovi SM et al (2011) Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res 29(2):258–264

    Article  CAS  PubMed  Google Scholar 

  18. El Kholy MA, El Sayed HA, Ahmed EM (2018) Expression of TWIST1 and CD44 as diagnostic and prognostic biomarkers in patients with gastric cancer. Sci J Al-Azhar Med Fac Girls 2(3):163

    Google Scholar 

  19. Liu J et al (2014) Epithelial-to-mesenchymal transition in human esophageal cancer associates with tumor progression and patient’s survival. Int J Clin Exp Pathol 7(10):6943

    PubMed  PubMed Central  Google Scholar 

  20. Vos MC et al (2016) MMP-14 and CD44 in epithelial-to-mesenchymal transition (EMT) in ovarian cancer. J Ovarian Res 9(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu H et al (2015) The role of CD44 in epithelial–mesenchymal transition and cancer development. Onco Targets Ther 8:3783

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Basakran NS (2015) CD44 as a potential diagnostic tumor marker. Saudi Med J 36(3):273

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mansouri A et al (2015) Expression analysis of CD44 isoforms S and V3, in patients with esophageal squamous cell carcinoma. Iran J Basic Med Sci 18(4):380

    PubMed  PubMed Central  Google Scholar 

  24. Chen C et al (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shiozaki M et al (2011) Expression of CD44v6 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Lett 2(3):429–434

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cho SH et al (2012) CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol 41(1):211–218

    CAS  PubMed  Google Scholar 

  27. Ardalan Khales S et al (2018) MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma. Asia-Pac J Clin Oncol 14(5):e434–e441

    Article  PubMed  Google Scholar 

  28. Zhou S, Klaunig JE (2016) Interplay between MMP-8 and TGF-β1 and its role in regulation of epithelial to mesenchymal transition in hepatocellular carcinoma. Transl Cancer Res 5(6):S1135–S1138

    Article  CAS  Google Scholar 

  29. Okabe H et al (2015) Epithelial-mesenchymal transition in gastroenterological cancer. J Cancer Metastasis Treat 1(3):183–189

    Article  Google Scholar 

  30. Ren J et al (2019) Twist1 in infiltrating macrophages attenuates kidney fibrosis via matrix metallopeptidase 13–mediated matrix degradation. J Am Soc Nephrol 30(9):1674–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee AY-L et al (2015) Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integr Cancer Ther 14(5):484–490

    Article  CAS  PubMed  Google Scholar 

  32. Sobin LH, Gospodarowicz MK, Wittekind C (2011) TNM classification of malignant tumours. John Wiley and Sons, New Jersey

    Google Scholar 

  33. Barooei R et al (2015) Evaluation of thymic stromal lymphopoietin (TSLP) and its correlation with lymphatic metastasis in human gastric cancer. Med Oncol 32(8):217

    Article  PubMed  Google Scholar 

  34. Mahmoudian RA et al (2019) MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med 7(7):e746

    Article  Google Scholar 

  35. Sun Y et al (2015) Crosstalk analysis of pathways in breast cancer using a network model based on overlapping differentially expressed genes. Exp Ther Med 10(2):743–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donato M et al (2013) Analysis and correction of crosstalk effects in pathway analysis. Genome Res 23(11):1885–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen X et al (2018) Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis. Exp Ther Med 16(2):1121–1130

    PubMed  PubMed Central  Google Scholar 

  38. Laubenbacher R et al (2009) A systems biology view of cancer. BBA Rev Cancer 1796(2):129–139

    CAS  Google Scholar 

  39. Mukherjee S et al (2010) Increased matrix metalloproteinase activation in esophageal squamous cell carcinoma. J Transl Med 8(1):91

    Article  PubMed  PubMed Central  Google Scholar 

  40. Su H et al (2011) Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res 17(9):2955–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kamel HFM, Al-Amodi HSAB (2017) Exploitation of gene expression and cancer biomarkers in paving the path to era of personalized medicine. Genomics Proteomics Bioinformatics 15(4):220–235

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sedighi M et al (2016) Matrix metalloproteinase-13-a potential biomarker for detection and prognostic assessment of patients with esophageal squamous cell carcinoma. Asian Pac J Cancer Prev 17(6):2781–2785

    PubMed  Google Scholar 

  43. Salaün M et al (2015) MMP-13 in-vivo molecular imaging reveals early expression in lung adenocarcinoma. PLoS ONE 10(7):0132960

    Article  Google Scholar 

  44. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santibanez JF et al (2018) Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev Dyn 247(3):382–395

    Article  CAS  PubMed  Google Scholar 

  46. Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27(31):5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang S-H et al (2016) MMP-13 is involved in oral cancer cell metastasis. Oncotarget 7(13):17144

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gu Z-D et al (2005) Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am J Gastroenterol 100(8):1835–1843

    Article  CAS  PubMed  Google Scholar 

  49. Etoh T et al (2000) Increased expression of collagenase-3 (MMP-13) and MT1-MMP in oesophageal cancer is related to cancer aggressiveness. Gut 47(1):50–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi M et al (2016) The Sp1-mediaded allelic regulation of MMP13 expression by an ESCC susceptibility SNP rs2252070. Sci Rep 6(1):1–8

    CAS  Google Scholar 

  51. Zhang B et al (2008) Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognosis of invasive breast cancer. BMC Cancer 8(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vincent-Chong VK et al (2014) Overexpression of MMP13 is associated with clinical outcomes and poor prognosis in oral squamous cell carcinoma. Sci World J 2014:1–12

    Article  Google Scholar 

  53. Yamada T et al (2010) Overexpression of MMP-13 gene in colorectal cancer with liver metastasis. Anticancer Res 30(7):2693–2699

    CAS  PubMed  Google Scholar 

  54. Yeh Y-C, Sheu B (2014) Matrix metalloproteinases and their inhibitors in the gastrointestinal cancers: current knowledge and clinical potential. Metalloproteinases Med 1(1):3–13

    Google Scholar 

  55. Kudo Y et al (2012) Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem 287(46):38716–38728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ye Q et al (2011) MUC1 induces metastasis in esophageal squamous cell carcinoma by upregulating matrix metalloproteinase 13. Lab Invest 91(5):778–787

    Article  CAS  PubMed  Google Scholar 

  58. Koga T et al (2007) TNF-α induces MUC1 gene transcription in lung epithelial cells: its signaling pathway and biological implication. Am J Physiol Lung Cell Mol Physiol 293(3):L693–L701

    Article  CAS  PubMed  Google Scholar 

  59. Gronnier C et al (1843) The MUC1 mucin regulates the tumorigenic properties of human esophageal adenocarcinomatous cells. BBA Mol Cell Res 11:2432–2437

    Google Scholar 

  60. Kahkhaie KR et al (2014) Specific MUC1 splice variants are correlated with tumor progression in esophageal cancer. World J Surg 38(8):2052–2057

    Article  PubMed  Google Scholar 

  61. Forghanifard MM et al (2012) Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol 19(3):743–749

    Article  PubMed  Google Scholar 

  62. Golyan FF, Abbaszadegan MR, Forghanifard MM (2019) TWIST1, MMP-21, and HLAG-1 co-overexpression is associated with ESCC aggressiveness. J Cell Biochem 120(9):14838–14846

    Article  PubMed  Google Scholar 

  63. Li C-W et al (2012) Epithelial–mesenchymal transition induced by TNF-α requires NF-κB–mediated transcriptional upregulation of Twist1. Can Res 72(5):1290–1300

    Article  CAS  Google Scholar 

  64. Hata T et al (2019) Targeting MUC1-C inhibits TWIST1 signaling in triple-negative breast cancer. Mol Cancer Ther 18(10):1744–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shelton EL, Yutzey KE (2007) Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol 302(2):376–388

    Article  CAS  PubMed  Google Scholar 

  66. Shelton EL, Yutzey KE (2008) Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 317(1):282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahmoudian RA et al (2019) MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med 7(7):e00746

    Article  PubMed  PubMed Central  Google Scholar 

  68. Molejon MI et al (2015) Deciphering the cellular source of tumor relapse identifies CD44 as a major therapeutic target in pancreatic adenocarcinoma. Oncotarget 6(10):7408

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brown RL et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Investig 121(3):1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mima K et al (2013) High CD44s expression is associated with the EMT expression profile and intrahepatic dissemination of hepatocellular carcinoma after local ablation therapy. J Hepatobiliary Pancreatic Sci 20(4):429–434

    Article  Google Scholar 

  71. Saito S et al (2013) CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer. Oncol Rep 29(4):1570–1578

    Article  CAS  PubMed  Google Scholar 

  72. Furuta J et al (2017) High molecular weight hyaluronic acid regulates MMP13 expression in chondrocytes via DUSP10/MKP5. J Orthop Res 35(2):331–339

    Article  CAS  PubMed  Google Scholar 

  73. Zhou P et al (2017) The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer 16(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dembinski JL, Krauss S (2009) Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metas 26(7):611

    Article  CAS  Google Scholar 

  75. Bagheri V et al (2018) Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer. J Cell Physiol 233(10):7036–7046

    Article  CAS  PubMed  Google Scholar 

  76. Moghbeli M et al (2019) Role of MAML1 in targeted therapy against the esophageal cancer stem cells. J Transl Med 17(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  77. Masamune A, Shimosegawa T (2013) Pancreatic stellate cells–multi-functional cells in the pancreas. Pancreatology 13(2):102–105

    Article  CAS  PubMed  Google Scholar 

  78. Ilatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche (s): the crosstalk between glioma stem cells and their microenvironment. BBA 1830(2):2496–2508

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our colleagues at the Human Division of Human Genetics, Immunology Research Institute, Avicenna Research Institute (Mashhad University of Medical Sciences) for their scientific and technical supports.

Funding

This study was supported by a Grant from Vice chancellor of Mashhad University of Medical Sciences (#941435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Gholamin.

Ethics declarations

Conflict of interest

None.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, R.A., Gharaie, M.L., Abbaszadegan, M.R. et al. Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma. Mol Cell Biochem 476, 2465–2478 (2021). https://doi.org/10.1007/s11010-021-04089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04089-2

Keywords

Navigation