Skip to main content
Log in

Contribution of RAGE axis activation to the association between metabolic syndrome and cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20:12–12

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cuevas A, Alvarez V, Carrasco F (2011) Epidemic of metabolic syndrome in Latin America. Curr Opin Endocrinol Diabetes Obes 18:134–138

    Article  PubMed  Google Scholar 

  3. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689

    Article  CAS  PubMed  Google Scholar 

  4. Hu G (2004) Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic european men and women. Arch Intern Med 164:1066

    Article  PubMed  Google Scholar 

  5. Muir LA, Neeley CK, Meyer KA, Baker NA, Brosius AM et al (2016) Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity (Silver Spring, MD) 24:597–605

    Article  CAS  Google Scholar 

  6. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuzawa Y, Funahashi T, Nakamura T (2011) The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 18:629–639

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig 112:1796–1808

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Barnes GT, Yang Q, Tan G, Yang D et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig 112:1821–1830

    Article  CAS  PubMed  Google Scholar 

  10. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13:851–863

    Article  CAS  PubMed  Google Scholar 

  11. Emanuela F, Grazia M, de Marco R, Maria Paola L, Giorgio F et al (2012) Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab 2012:476380

    Article  PubMed  PubMed Central  Google Scholar 

  12. Phillips CM, Chen L-W, Heude B, Bernard JY, Harvey NC et al (2019) Dietary inflammatory index and non-communicable disease risk: a narrative review. Nutrients 11:1873

    Article  CAS  PubMed Central  Google Scholar 

  13. Garcia-Arellano A, Ramallal R, Ruiz-Canela M, Salas-Salvadó J, Corella D et al (2015) dietary inflammatory index and incidence of cardiovascular disease in the PREDIMED study. Nutrients 7:4124–4138

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alam I, Shivappa N, Hebert JR, Pawelec G, Larbi A (2018) Relationships between the inflammatory potential of the diet, aging and anthropometric measurements in a cross-sectional study in Pakistan. Nutr Healthy Aging 4:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aslani Z, Qorbani M, Hébert JR, Shivappa N, Motlagh ME et al (2018) Association of Dietary Inflammatory Index with anthropometric indices in children and adolescents: the weight disorder survey of the Childhood and Adolescence Surveillance and Prevention of Adult Non-communicable Disease (CASPIAN)-IV study. Br J Nutr 121:340–350

    Article  PubMed  Google Scholar 

  16. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D (2012) Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 35:2402–2411

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang X, Wang J (2019) The role of metabolic syndrome in endometrial cancer: a review. Front Oncol 9:744–744

    Article  PubMed  PubMed Central  Google Scholar 

  18. Adambekov S, Yi Y, Fabio A, Miljkovic I, Edwards RP et al (2019) Metabolic syndrome in endometrial cancer patients: systematic review. Metab Syndr Relat Disord 17:241–249

    Article  PubMed  Google Scholar 

  19. Kim JW, Ahn ST, Oh MM, Moon DG, Han K et al (2019) Incidence of prostate cancer according to metabolic health status: a nationwide cohort study. J Korean Med Sci 34:e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim S-Y, K-d H, Joo Y-H (2019) Metabolic syndrome and incidence of laryngeal cancer: a nationwide cohort study. Sci Rep 9:667–667

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dibaba DT, Ogunsina K, Braithwaite D, Akinyemiju T (2019) Metabolic syndrome and risk of breast cancer mortality by menopause, obesity, and subtype. Breast Cancer Res Treat 174:209–218

    Article  CAS  PubMed  Google Scholar 

  22. Virchow R (1989) As based upon physiological and pathological histology. Nutr Rev 47:23–25

    Article  CAS  PubMed  Google Scholar 

  23. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25:1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mantovani A (2018) The inflammation—cancer connection. FEBS J 285:638–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sohn JJ, Schetter AJ, Yfantis HG, Ridnour LA, Horikawa I et al (2012) Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS One 7:e44156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murata M (2018) Inflammation and cancer. Environ Health Prev Med 23:50

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chang H-H, Eibl G (2019) Obesity-induced adipose tissue inflammation as a strong promotional factor for pancreatic ductal adenocarcinoma. Cells 8:673

    Article  CAS  PubMed Central  Google Scholar 

  28. Liu ZY, Gao XP, Zhu S, Liu YH, Wang LJ et al (2019) Dietary inflammatory index and risk of gynecological cancers: a systematic review and meta-analysis of observational studies. J Gynecol Oncol 30:e23

    Article  PubMed  Google Scholar 

  29. Moradi S, Issah A, Mohammadi H, Mirzaei K (2018) Associations between dietary inflammatory index and incidence of breast and prostate cancer: a systematic review and meta-analysis. Nutrition 55–56:168–178

    Article  PubMed  Google Scholar 

  30. Namazi N, Larijani B, Azadbakht L (2018) Association between the dietary inflammatory index and the incidence of cancer: a systematic review and meta-analysis of prospective studies. Public Health 164:148–156

    Article  CAS  PubMed  Google Scholar 

  31. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA et al (2014) Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet (London, UK) 384:755–765

    Article  Google Scholar 

  32. Stocks T, Van Hemelrijck M, Manjer J, Bjørge T, Ulmer H et al (2012) Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project. Hypertension 59:802–810

    Article  CAS  PubMed  Google Scholar 

  33. Hristova MG (2018) Neuroendocrine and immune disequilibrium as a probable link between metabolic syndrome and carcinogenesis. Med Hypotheses 118:1–5

    Article  CAS  PubMed  Google Scholar 

  34. Doyle SL, Donohoe CL, Lysaght J, Reynolds JV (2011) Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc 71:181–189

    Article  PubMed  Google Scholar 

  35. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267:14987–14997

    Article  CAS  PubMed  Google Scholar 

  36. Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Investig 70:138–151

    CAS  PubMed  Google Scholar 

  37. Vlassara H (2005) Advanced glycation in health and disease: role of the modern environment. Ann N Y Acad Sci 1043:452–460

    Article  CAS  PubMed  Google Scholar 

  38. Fournet M, Bonté F, Desmoulière A (2018) Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis 9:880–900

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aragno M, Mastrocola R (2017) Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease. Nutrients 9:385

    Article  PubMed Central  Google Scholar 

  40. Cai W, Gao Q-d, Zhu L, Peppa M, He C et al (2002) Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med 8:337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A et al (2015) Dietary advanced glycation end products and their role in health and disease. Adv Nutr (Bethesda, MD) 6:461–473

    Article  Google Scholar 

  42. Delgado-Andrade C, Tessier FJ, Niquet-Leridon C, Seiquer I, Pilar Navarro M (2011) Study of the urinary and faecal excretion of N ε-carboxymethyllysine in young human volunteers. Amino Acids 43:595–602

    Article  PubMed  Google Scholar 

  43. Tessier FJ, Niquet-Léridon C, Jacolot P, Jouquand C, Genin M et al (2016) Front cover: quantitative assessment of organ distribution of dietary protein-bound 13 C-labeled Nɛ-carboxymethyllysine after a chronic oral exposure in mice. Mol Nutr Food Res 60:2446–2456

    Article  CAS  PubMed  Google Scholar 

  44. Luévano-Contreras C, Gómez-Ojeda A, Macías-Cervantes MH, Garay-Sevilla ME (2017) Dietary advanced glycation end products and cardiometabolic risk. Curr Diabetes Rep 17:63

    Article  Google Scholar 

  45. Gómez-Ojeda A, Jaramillo-Ortíz S, Wrobel K, Wrobel K, Barbosa-Sabanero G et al (2018) Comparative evaluation of three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of N ε-carboxymethyl lysine in food samples. Food Chem 243:11–18

    Article  PubMed  Google Scholar 

  46. Xue J, Rai V, Singer D, Chabierski S, Xie J et al (2011) Advanced glycation end product recognition by the receptor for AGEs. Structure (London, UK 1993) 19:722–732

    Article  CAS  Google Scholar 

  47. Xue J, Ray R, Singer D, Böhme D, Burz DS et al (2014) The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry 53:3327–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan SF, Ramasamy R, Schmidt AM (2009) The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med 11:e9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106:842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. González I, Romero J, Rodríguez BL, Pérez-Castro R, Rojas A (2013) The immunobiology of the receptor of advanced glycation end-products: trends and challenges. Immunobiology 218:790–797

    Article  PubMed  Google Scholar 

  51. Rojas A, Delgado-López F, González I, Pérez-Castro R, Romero J et al (2013) The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal 25:609–614

    Article  CAS  PubMed  Google Scholar 

  52. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56:739–744

    Article  CAS  PubMed  Google Scholar 

  53. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T et al (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  CAS  PubMed  Google Scholar 

  56. Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25:2185–2197

    Article  CAS  PubMed  Google Scholar 

  57. Sakaguchi M, Kinoshita R, Putranto EW, Ruma IMW, Sumardika IW et al (2017) Signal diversity of receptor for advanced glycation end products. Acta Med Okayama 71:459–465

    CAS  PubMed  Google Scholar 

  58. Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L et al (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, Bukulin M, Kojro E, Roth A, Metz VV et al (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516

    Article  CAS  PubMed  Google Scholar 

  60. Basta G, Del Turco S, Navarra T, Lee WM, Acute Liver Failure Study G (2015) Circulating levels of soluble receptor for advanced glycation end products and ligands of the receptor for advanced glycation end products in patients with acute liver failure. Liver Transpl 21:847–854

    Article  PubMed  PubMed Central  Google Scholar 

  61. Geroldi D, Falcone C, Emanuele E (2006) Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 13:1971–1978

    Article  CAS  PubMed  Google Scholar 

  62. Santilli F, Vazzana N, Bucciarelli L, Davi G (2009) Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem 16:940–952

    Article  CAS  PubMed  Google Scholar 

  63. Song F, Hurtado del Pozo C, Rosario R, Zou YS, Ananthakrishnan R et al (2014) RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice. Diabetes 63:1948–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hurtado Del Pozo C, Ruiz HH, Arivazhagan L, Aranda JF, Shim C et al (2019) A receptor of the immunoglobulin superfamily regulates adaptive thermogenesis. Cell Rep 28:773–791.e777

    Article  CAS  PubMed  Google Scholar 

  65. Gaens KHJ, Goossens GH, Niessen PM, van Greevenbroek MM, van der Kallen CJH et al (2014) N ε-(carboxymethyl)lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance. Arterioscler Thromb Vasc Biol 34:1199–1208

    Article  CAS  PubMed  Google Scholar 

  66. Guzmán-Ruiz R, Ortega F, Rodríguez A, Vázquez-Martínez R, Díaz-Ruiz A et al (2014) Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β-cells. Int J Obes 38:1545–1554

    Article  Google Scholar 

  67. Shimizu T, Yamakuchi M, Biswas KK, Aryal B, Yamada S et al (2016) HMGB1 is secreted by 3T3-L1 adipocytes through JNK signaling and the secretion is partially inhibited by adiponectin. Obesity 24:1913–1921

    Article  CAS  PubMed  Google Scholar 

  68. Montes VN, Subramanian S, Goodspeed L, Wang SA, Omer M et al (2015) Anti-HMGB1 antibody reduces weight gain in mice fed a high-fat diet. Nutr Diabetes 5:e161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendoza-Herrera K, Aradillas-García C, Mejía-Diaz MA, Alegría-Torres JA, Garay-Sevilla ME et al (2018) Association of dietary advanced glycation end products with metabolic syndrome in young mexican adults. Medicines (Basel, Switz) 5:128

    CAS  Google Scholar 

  70. Jiao L, Stolzenberg-Solomon R, Zimmerman TP, Duan Z, Chen L et al (2015) Dietary consumption of advanced glycation end products and pancreatic cancer in the prospective NIH-AARP diet and health study. Am J Clin Nutr 101:126–134

    Article  CAS  PubMed  Google Scholar 

  71. Accardi G, Shivappa N, Di Maso M, Hébert JR, Fratino L et al (2019) Dietary inflammatory index and cancer risk in the elderly: a pooled-analysis of Italian case-control studies. Nutrition 63–64:205–210

    Article  PubMed  Google Scholar 

  72. Hoang DV, Shivappa N, Pham NM, Hebert JR, Binns CW et al (2019) Dietary inflammatory index is associated with increased risk for prostate cancer among Vietnamese men. Nutrition 62:140–145

    Article  PubMed  Google Scholar 

  73. McMahon DM, Burch JB, Hébert JR, Hardin JW, Zhang J et al (2019) Diet-related inflammation and risk of prostate cancer in the California Men’s Health Study. Ann Epidemiol 29:30–38

    Article  PubMed  Google Scholar 

  74. Shivappa N, Niclis C, Coquet JB, Román MD, Hébert JR et al (2018) Increased inflammatory potential of diet is associated with increased odds of prostate cancer in Argentinian men. Cancer Causes Control 29:803–813

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zheng J, Tabung FK, Zhang J, Liese AD, Shivappa N et al (2018) Association between post-cancer diagnosis dietary inflammatory potential and mortality among invasive breast cancer survivors in the women’s health initiative. Cancer Epidemiol Biomark Prev 27:454–463

    Article  CAS  Google Scholar 

  76. Zucchetto A, Serraino D, Shivappa N, Hébert JR, Stocco C et al (2017) Dietary inflammatory index before diagnosis and survival in an Italian cohort of women with breast cancer. Br J Nutr 117:1456–1462

    Article  CAS  PubMed  Google Scholar 

  77. Nagle CM, Ibiebele T, Shivappa N, Hébert JR, DeFazio A et al (2018) The association between the inflammatory potential of diet and risk of developing, and survival following, a diagnosis of ovarian cancer. Eur J Nutr 58:1747–1756

    Article  PubMed  Google Scholar 

  78. Shivappa N, Hébert JR, Paddock LE, Rodriguez-Rodriguez L, Olson SH et al (2018) Dietary inflammatory index and ovarian cancer risk in a New Jersey case-control study. Nutrition (Burbank, Los Angeles County, CA) 46:78–82

    Article  Google Scholar 

  79. Shivappa N, Hébert JR, Zucchetto A, Montella M, Serraino D et al (2015) Dietary inflammatory index and endometrial cancer risk in an Italian case–control study. Br J Nutr 115:138–146

    Article  PubMed  Google Scholar 

  80. Malik P, Chaudhry N, Mittal R, Mukherjee TK (2015) Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim Biophys Acta Gen Subj 1850:1898–1904

    Article  CAS  Google Scholar 

  81. Rojas A, Figueroa H, Morales E (2009) Fueling inflammation at tumor microenvironment: the role of multiligand/rage axis. Carcinogenesis 31:334–341

    Article  PubMed  Google Scholar 

  82. Fuentes E, Palomo I, Rojas A (2016) Cross-talk between platelet and tumor microenvironment: role of multiligand/RAGE axis in platelet activation. Blood Rev 30:213–221

    Article  CAS  PubMed  Google Scholar 

  83. Shahab U, Ahmad MK, Mahdi AA, Waseem M, Arif B et al (2018) The receptor for advanced glycation end products: a fuel to pancreatic cancer. Semin Cancer Biol 49:37–43

    Article  CAS  PubMed  Google Scholar 

  84. Rojas A, Araya P, Romero J, Delgado-López F, Gonzalez I et al (2018) Skewed signaling through the receptor for advanced glycation end-products alters the proinflammatory profile of tumor-associated macrophages. Cancer Microenviron 11:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwak T, Drews-Elger K, Ergonul A, Miller PC, Braley A et al (2016) Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. Oncogene 36:1559–1572

    Article  PubMed  Google Scholar 

  86. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  Google Scholar 

  87. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  CAS  PubMed  Google Scholar 

  88. Hotamisligil G, Shargill N, Spiegelman B (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  89. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kwon H, Pessin JE (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol 4:71–71

    Article  Google Scholar 

  91. Jung UJ, Choi M-S (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15:6184–6223

    Article  PubMed  PubMed Central  Google Scholar 

  92. Antuna-Puente B, Feve B, Fellahi S, Bastard JP (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 34:2–11

    Article  CAS  PubMed  Google Scholar 

  93. Monden M, Koyama H, Otsuka Y, Morioka T, Mori K et al (2013) Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of toll-like receptor 2. Diabetes 62:478–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gaens KHJ, Stehouwer CDA, Schalkwijk CG (2013) Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr Opin Lipidol 24:4–11

    Article  CAS  PubMed  Google Scholar 

  95. Gaens KHJ, Stehouwer CDA, Schalkwijk CG (2010) The Nε-(carboxymethyl)lysine–RAGE axis: putative implications for the pathogenesis of obesity-related complications. Expert Rev Endocrinol Metab 5:839–854

    Article  CAS  PubMed  Google Scholar 

  96. Ueno H, Koyama H, Shoji T, Monden M, Fukumoto S et al (2010) Receptor for advanced glycation end-products (RAGE) regulation of adiposity and adiponectin is associated with atherogenesis in apoE-deficient mouse. Atherosclerosis 211:431–436

    Article  CAS  PubMed  Google Scholar 

  97. Michetti F, Dell’Anna E, Tiberio G, Cocchia D (1983) Immunochemical and immunocytochemical study of S-100 protein in rat adipocytes. Brain Res 262:352–356

    Article  CAS  PubMed  Google Scholar 

  98. Steiner J, Schiltz K, Walter M, Wunderlich MT, Keilhoff G et al (2010) S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology 35:321–324

    Article  CAS  PubMed  Google Scholar 

  99. Son KH, Son M, Ahn H, Oh S, Yum Y et al (2016) Age-related accumulation of advanced glycation end-products-albumin, S100β, and the expressions of advanced glycation end product receptor differ in visceral and subcutaneous fat. Biochem Biophys Res Commun 477:271–276

    Article  CAS  PubMed  Google Scholar 

  100. Zhang J, Zhang L, Zhang S, Yu Q, Xiong F et al (2017) HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol 454:103–111

    Article  CAS  PubMed  Google Scholar 

  101. Hayashi T, Namiki M (1980) Formation of two-carbon sugar fragment at an early stage of the browning reaction of sugar with amine. Agric Biol Chem 44:2575–2580

    CAS  Google Scholar 

  102. Cho SJ, Roman G, Yeboah F, Konishi Y (2007) The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem 14:1653–1671

    Article  CAS  PubMed  Google Scholar 

  103. Thornalley PJ, Yurek-George A, Argirov OK (2000) Kinetics and mechanism of the reaction of aminoguanidine with the α-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem Pharmacol 60:55–65

    Article  CAS  PubMed  Google Scholar 

  104. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S et al (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gugliucci A (2017) Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr (Bethesda, MD) 8:54–62

    Article  CAS  Google Scholar 

  107. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M et al (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27

    Article  CAS  PubMed  Google Scholar 

  108. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R et al (2002) Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 99:15596–15601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T et al (2005) Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 1043:461–466

    Article  CAS  PubMed  Google Scholar 

  110. Saha A, Poojary P, Chan L, Chauhan K, Nadkarni G et al (2017) Increased odds of metabolic syndrome with consumption of high dietary advanced glycation end products in adolescents. Diabetes Metab 43:469–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Angoorani P, Ejtahed H-S, Mirmiran P, Mirzaei S, Azizi F (2016) Dietary consumption of advanced glycation end products and risk of metabolic syndrome. Int J Food Sci Nutr 67:170–176

    Article  CAS  PubMed  Google Scholar 

  112. Vlassara H, Cai W, Tripp E, Pyzik R, Yee K et al (2016) Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia 59:2181–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mirmiran P, Yousefi R, Mottaghi A, Azizi F (2018) Advanced glycation end products and risk of hypertension in Iranian adults: Tehran lipid and glucose study. J Res Med Sci 23:43–43

    Article  PubMed  PubMed Central  Google Scholar 

  114. Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G et al (2019) S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci 77:129–147

    Article  PubMed  Google Scholar 

  115. Buckman LB, Anderson-Baucum EK, Hasty AH, Ellacott KL (2014) Regulation of S100B in white adipose tissue by obesity in mice. Adipocyte 3:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A et al (1999) RAGE mediates a novel proinflammatory axis. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  117. Fujiya A, Nagasaki H, Seino Y, Okawa T, Kato J et al (2013) The role of S100B in the interaction between adipocytes and macrophages. Obesity 22:371–379

    Article  PubMed  Google Scholar 

  118. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wautier M-P, Chappey O, Corda S, Stern DM, Schmidt AM et al (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Phys-Endocrinol Metab 280:E685–E694

    Article  CAS  Google Scholar 

  120. Daffu G, del Pozo CH, O’Shea KM, Ananthakrishnan R, Ramasamy R et al (2013) Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 14:19891–19910

    Article  PubMed  PubMed Central  Google Scholar 

  121. Spahis S, Borys J-M, Levy E (2017) Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxid Redox Signal 26:445–461

    Article  CAS  PubMed  Google Scholar 

  122. Cristani M, Speciale A, Saija A, Gangemi S, Minciullo P et al (2016) Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Curr Med Chem 23:3862–3882

    Article  CAS  PubMed  Google Scholar 

  123. Koçak H, Öner-İyidoğan Y, Gürdöl F, Öner P, Süzme R et al (2007) Advanced oxidation protein products in obese women: its relation to insulin resistance and resistin. Clin Exp Med 7:173–178

    Article  PubMed  Google Scholar 

  124. Venturini D, Simão ANC, Dichi I (2015) Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation. Nutr Res 35:759–765

    Article  CAS  PubMed  Google Scholar 

  125. Wu Q, Zhong Z-M, Zhu S-Y, Liao C-R, Pan Y et al (2015) Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway. Apoptosis 21:36–50

    Article  Google Scholar 

  126. Rong G, Tang X, Guo T, Duan N, Wang Y et al (2015) Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress. J Physiol Biochem 71:455–470

    Article  CAS  PubMed  Google Scholar 

  127. Yu R, Kim C-S, Kwon B-S, Kawada T (2006) Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity 14:1353–1362

    Article  CAS  PubMed  Google Scholar 

  128. Catrysse L, van Loo G (2018) Adipose tissue macrophages and their polarization in health and obesity. Cell Immunol 330:114–119

    Article  CAS  PubMed  Google Scholar 

  129. Castoldi A, Naffah de Souza C, Câmara NOS, Moraes-Vieira PM (2016) The macrophage switch in obesity development. Front Immunol 6:637–637

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rojas A, Delgado-López F, Perez-Castro R, Gonzalez I, Romero J et al (2015) HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumor Biol 37:3321–3329

    Article  Google Scholar 

  131. Lee B-C, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842:446–462

    Article  CAS  PubMed  Google Scholar 

  132. Oh S, Ahn H, Park H, Lee J-I, Park KY et al (2019) The attenuating effects of pyridoxamine on adipocyte hypertrophy and inflammation differ by adipocyte location. J Nutr Biochem 72:108173

    Article  CAS  PubMed  Google Scholar 

  133. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue treg cells. Nature 486:549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lu J, Zhao J, Meng H, Zhang X (2019) Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front Immunol 10:1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen Y, Akirav EM, Chen W, Henegariu O, Moser B et al (2008) RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol 181:4272–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Quail DF, Dannenberg AJ (2019) The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol 15:139–154

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG (2018) Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 4:374–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. El-Far AH, Sroga G, Jaouni SKA, Mousa SA (2020) Role and mechanisms of RAGE-ligand complexes and RAGE-inhibitors in cancer progression. Int J Mol Sci 21:3613

    Article  CAS  PubMed Central  Google Scholar 

  139. Azizian-Farsani F, Abedpoor N, Hasan Sheikhha M, Gure AO, Nasr-Esfahani MH et al (2020) Receptor for advanced glycation end products acts as a fuel to colorectal cancer development. Front Oncol 10:552283

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S et al (2018) AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol 49:44–55

    Article  CAS  PubMed  Google Scholar 

  141. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  142. Rondinone CM (2006) Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29:81–90

    Article  CAS  PubMed  Google Scholar 

  143. Fischer-Posovszky P, Wabitsch M, Hochberg Z (2007) Endocrinology of adipose tissue—an update. Horm Metab Res 39:314–321

    Article  CAS  PubMed  Google Scholar 

  144. Fasshauer M, Blüher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36:461–470

    Article  CAS  PubMed  Google Scholar 

  145. Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T (2014) Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 28:15–23

    Article  CAS  PubMed  Google Scholar 

  146. Wauman J, Zabeau L, Tavernier J (2017) The leptin receptor complex: heavier than expected? Front Endocrinol 8:30–30

    Article  Google Scholar 

  147. Farr OM, Gavrieli A, Mantzoros CS (2015) Leptin applications in 2015: what have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes 22:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Friedman J (2016) The long road to leptin. J Clin Invest 126:4727–4734

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ohashi K, Ouchi N, Matsuzawa Y (2012) Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie 94:2137–2142

    Article  CAS  PubMed  Google Scholar 

  150. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G et al (2014) New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int 2014:658913

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI (2019) Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol 42:243–260

    Article  CAS  Google Scholar 

  152. Di Zazzo E, Polito R, Bartollino S, Nigro E, Porcile C et al (2019) Adiponectin as link factor between adipose tissue and cancer. Int J Mol Sci 20:839

    Article  CAS  PubMed Central  Google Scholar 

  153. Liu J, Lam JBB, Chow KHM, Xu A, Lam KSL et al (2008) Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis 29:2195–2202

    Article  CAS  PubMed  Google Scholar 

  154. Porcile C, Di Zazzo E, Monaco ML, D’Angelo G, Passarella D et al (2014) Adiponectin as novel regulator of cell proliferation in human glioblastoma. J Cell Physiol 229:1444–1454

    Article  CAS  PubMed  Google Scholar 

  155. Illiano M, Nigro E, Sapio L, Caiafa I, Spina A et al (2017) Adiponectin down-regulates CREB and inhibits proliferation of A549 lung cancer cells. Pulm Pharmacol Ther 45:114–120

    Article  CAS  PubMed  Google Scholar 

  156. Sayej WN, Knight Iii PR, Guo WA, Mullan B, Ohtake PJ et al (2016) Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. Biomed Res Int 2016:7867852

    Article  PubMed  PubMed Central  Google Scholar 

  157. Han D, Yamamoto Y, Munesue S, Motoyoshi S, Saito H et al (2013) Induction of receptor for advanced glycation end products by insufficient leptin action triggers pancreatic β-cell failure in type 2 diabetes. Genes Cells 18:302–314

    Article  CAS  PubMed  Google Scholar 

  158. Guo Z, Huang D, Tang X, Han J, Li J (2015) Correlation between advanced glycation end-products and the expression of fatty inflammatory factors in type II diabetic cardiomyopathy. Bosnian J Basic Med Sci 15:15–19

    CAS  Google Scholar 

  159. Uribarri J, Cai W, Woodward M, Tripp E, Goldberg L et al (2015) Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity? J Clin Endocrinol Metab 100:1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Koborová I, Gurecká R, Csongová M, Volkovová K, Szökő É et al (2017) Association between metabolically healthy central obesity in women and levels of soluble receptor for advanced glycation end products, soluble vascular adhesion protein-1, and the activity of semicarbazide-sensitive amine oxidase. Croat Med J 58:106–116

    Article  PubMed  PubMed Central  Google Scholar 

  161. Del Turco S, Navarra T, Gastaldelli A, Basta G (2011) Protective role of adiponectin on endothelial dysfunction induced by AGEs: a clinical and experimental approach. Microvasc Res 82:73–76

    Article  PubMed  Google Scholar 

  162. Maeda S, Matsui T, Takeuchi M, Yamagishi S-I (2011) Pigment epithelium-derived factor (PEDF) blocks advanced glycation end products (AGEs)-RAGE-induced suppression of adiponectin mRNA level in adipocytes by inhibiting NADPH oxidase-mediated oxidative stress generation. Int J Cardiol 152:408–410

    Article  PubMed  Google Scholar 

  163. Maeda S, Matsui T, Takeuchi M, Yamagishi S-I (2011) Co-treatment with azelinidipine and olmesartan inhibits advanced glycation end products (AGEs) elicited down-regulation of adiponectin mRNA levels in cultured adipocytes partly via its anti-oxidative property. Int J Cardiol 146:264–266

    Article  PubMed  Google Scholar 

  164. Ojima A, Matsui T, Nakamura N, Higashimoto Y, Ueda S et al (2014) DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis. Horm Metab Res 47:253–258

    Article  PubMed  Google Scholar 

  165. Mazidi M, Rezaie P, Kengne AP, Stathopoulou MG, Azimi-Nezhad M et al (2017) VEGF, the underlying factor for metabolic syndrome; fact or fiction? Diabetes Metab Syndr Clin Res Rev 11:S61–S64

    Article  Google Scholar 

  166. Siveen KS, Prabhu K, Krishnankutty R, Kuttikrishnan S, Tsakou M et al (2017) Vascular Endothelial Growth Factor (VEGF) Signaling in tumour vascularization: potential and challenges. Curr Vasc Pharmacol 15:339

    Article  CAS  PubMed  Google Scholar 

  167. DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100:979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hussain RM, Ciulla TA (2017) Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin Emerging Drugs 22:235–246

    Article  CAS  Google Scholar 

  169. Mick GJ, Wang X, McCormick K (2002) White adipocyte vascular endothelial growth factor: regulation by insulin. Endocrinology 143:948–953

    Article  CAS  PubMed  Google Scholar 

  170. Miyazawa-Hoshimoto S, Takahashi K, Bujo H, Hashimoto N, Saito Y (2003) Elevated serum vascular endothelial growth factor is associated with visceral fat accumulation in human obese subjects. Diabetologia 46:1483–1488

    Article  CAS  PubMed  Google Scholar 

  171. Silha JV, Krsek M, Sucharda P, Murphy LJ (2005) Angiogenic factors are elevated in overweight and obese individuals. Int J Obes 29:1308–1314

    Article  CAS  Google Scholar 

  172. Perrot-Applanat M, Di Benedetto M (2012) Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adhes Migr 6:547–553

    Article  Google Scholar 

  173. Perrot-Applanat M (2012) VEGF isoforms. Cell Adhes Migr 6:526–527

    Article  Google Scholar 

  174. Kheirouri S, Ebrahimi E, Alizadeh M (2018) Association of S100B serum levels with metabolic syndrome and its components. Acta Medica Port 31:201

    Article  CAS  Google Scholar 

  175. Seguella L, Capuano R, Pesce M, Annunziata G, Pesce M et al (2019) S100B protein stimulates proliferation and angiogenic mediators release through RAGE/pAkt/mTOR pathway in human colon adenocarcinoma Caco-2 cells. Int J Mol Sci 20:3240

    Article  CAS  PubMed Central  Google Scholar 

  176. Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG (2014) Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 42:85–102

    Article  CAS  PubMed  Google Scholar 

  177. Yamagishi S-I, Matsui T (2011) Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy. Curr Pharm Biotechnol 12:362–368

    Article  CAS  PubMed  Google Scholar 

  178. Nakamura N, Matsui T, Ishibashi Y, Sotokawauchi A, Fukami K et al (2017) RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol Med (Cambridge, MA) 23:295–306

    Article  Google Scholar 

  179. Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16:309–321

    Article  CAS  PubMed  Google Scholar 

  180. Otero K, Martínez F, Beltrán A, González D, Herrera B et al (2001) Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 359:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hudish LI, Reusch JE, Sussel L (2019) β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 129:4001–4008

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sherling DH, Perumareddi P, Hennekens CH (2017) Metabolic syndrome. J Cardiovasc Pharmacol Ther 22:365–367

    Article  CAS  PubMed  Google Scholar 

  183. Unoki H, Bujo H, Yamagishi S-I, Takeuchi M, Imaizumi T et al (2007) Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes. Diabetes Res Clin Pract 76:236–244

    Article  CAS  PubMed  Google Scholar 

  184. Afridi SK, Aftab MF, Murtaza M, Ghaffar S, Karim A et al (2016) A new glycotoxins inhibitor attenuates insulin resistance in liver and fat cells. Biochem Biophys Res Commun 476:188–195

    Article  CAS  PubMed  Google Scholar 

  185. Khan G, Aftab MF, Bano B, Khan KM, Murtaza M et al (2018) A new indanedione derivative alleviates symptoms of diabetes by modulating RAGE-NF-kappaB pathway in db/db mice. Biochem Biophys Res Commun 501:863–870

    Article  CAS  PubMed  Google Scholar 

  186. Vigneri R, Goldfine ID, Frittitta L (2016) Insulin, insulin receptors, and cancer. J Endocrinol Investig 39:1365–1376

    Article  CAS  Google Scholar 

  187. Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin–IGF axis. Trends Endocrinol Metab 17:328–336

    Article  CAS  PubMed  Google Scholar 

  188. Singh P, Alex JM, Bast F (2013) Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 31:805

    Article  PubMed  Google Scholar 

  189. Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT et al (2012) Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res 2012:789174

    Article  PubMed  PubMed Central  Google Scholar 

  190. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  CAS  PubMed  Google Scholar 

  191. Kasprzak A, Kwasniewski W, Adamek A, Gozdzicka-Jozefiak A (2017) Insulin-like growth factor (IGF) axis in cancerogenesis. Mutat Res/Rev Mutat Res 772:78–104

    Article  CAS  Google Scholar 

  192. Heidland A, Sebekova K, Schinzel R (2001) Advanced glycation end products and the progressive course of renal disease. Am J Kidney Dis 38:S100–S106

    Article  CAS  PubMed  Google Scholar 

  193. Kirstein M, Aston C, Hintz R, Vlassara H (1992) Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J Clin Invest 90:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. McCarthy AD, Etcheverry SB, Cortizo AM (2001) Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol 38:113–122

    Article  CAS  PubMed  Google Scholar 

  195. Yang S-J, Chen C-Y, Chang G-D, Wen H-C, Chen C-Y et al (2013) Activation of Akt by advanced glycation end products (AGEs): involvement of IGF-1 receptor and caveolin-1. PLoS One 8:e58100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Catrysse L, van Loo G (2017) Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol 27:417–429

    Article  CAS  PubMed  Google Scholar 

  197. Yeo CD, Park KH, Park CK, Lee SH, Kim SJ et al (2015) Expression of insulin-like growth factor 1 receptor (IGF-1R) predicts poor responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer patients harboring activating EGFR mutations. Lung Cancer 87:311–317

    Article  PubMed  Google Scholar 

  198. Riedemann J, Macaulay VM (2006) IGF1R signalling and its inhibition. Endocr Relat Cancer 13:S33–S43

    Article  CAS  PubMed  Google Scholar 

  199. Sui P, Cao H, Meng L, Hu P, Ma H et al (2014) The synergistic effect of humanized monoclonal antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) and chemotherapy. Curr Drug Targets 15:674–680

    Article  CAS  PubMed  Google Scholar 

  200. Simó R, Sáez-López C, Barbosa-Desongles A, Hernández C, Selva DM (2015) Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab 26:376–383

    Article  PubMed  Google Scholar 

  201. Engin A (2017) Obesity-associated breast cancer: analysis of risk factors. Obesity and lipotoxicity. Springer International Publishing, pp 571–606

  202. Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, Mourtzakis M (2018) Glucose impairments and insulin resistance in prostate cancer: the role of obesity, nutrition and exercise. Obes Rev 19:1008–1016

    Article  PubMed  Google Scholar 

  203. Liang J, Shang Y (2013) Estrogen and cancer. Annu Rev Physiol 75:225–240

    Article  CAS  PubMed  Google Scholar 

  204. Zhou Y, Bolton EC, Jones JO (2014) Androgens and androgen receptor signaling in prostate tumorigenesis. J Mol Endocrinol 54:R15–R29

    Article  PubMed  Google Scholar 

  205. Matou-Nasri S, Sharaf H, Wang Q, Almobadel N, Rabhan Z et al (2017) Biological impact of advanced glycation endproducts on estrogen receptor-positive MCF-7 breast cancer cells. Biochim Biophys Acta Mol Basis Dis 1863:2808–2820

    Article  CAS  PubMed  Google Scholar 

  206. Mukherjee TK, Reynolds PR, Hoidal JR (2005) Differential effect of estrogen receptor alpha and beta agonists on the receptor for advanced glycation end product expression in human microvascular endothelial cells. Biochim Biophys Acta Mol Cell Res 1745:300–309

    Article  CAS  Google Scholar 

  207. Lata K, Mukherjee TK (2014) Knockdown of receptor for advanced glycation end products attenuate 17α-ethinyl-estradiol dependent proliferation and survival of MCF-7 breast cancer cells. Biochim Biophys Acta Gen Subj 1840:1083–1091

    Article  CAS  Google Scholar 

  208. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hotamisligil GS, Bernlohr DA (2015) Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat Rev Endocrinol 11:592–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Prentice KJ, Saksi J, Hotamisligil GS (2019) Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res 60:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Furuhashi M (2019) Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J Atheroscler Thromb 26:216–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tabara Y, Takahashi Y, Kawaguchi T, Setoh K, Terao C et al (2014) Association of serum–free fatty acid level with reduced reflection pressure wave magnitude and central blood pressure. Hypertension 64:1212–1218

    Article  CAS  PubMed  Google Scholar 

  213. Guo S-X, Yan Y-Z, Mu L-T, Niu Q, He J et al (2015) Association of serum free fatty acids with hypertension and insulin resistance among rural uyghur adults in far Western China. Int J Environ Res Public Health 12:6582–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Madak-Erdogan Z, Band S, Zhao YC, Smith BP, Kulkoyluoglu-Cotul E et al (2019) Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer Res Canres 2849:2018

    Google Scholar 

  216. Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M et al (2017) Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  217. Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C et al (2018) FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun 9:2923–2923

    Article  PubMed  PubMed Central  Google Scholar 

  218. Celis JE, Ostergaard M, Basse B, Celis A, Lauridsen JB et al (1996) Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progression of human bladder transitional cell carcinomas. Cancer Res 56:4782–4790

    CAS  PubMed  Google Scholar 

  219. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gorbenko O, Panayotou G, Zhyvoloup A, Volkova D, Gout I et al (2009) Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4. Mol Cell Biochem 337:299–305

    Article  Google Scholar 

  221. Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME et al (2019) PTEN tumor-suppressor: the dam of stemness in cancer. Cancers 11:1076

    Article  CAS  PubMed Central  Google Scholar 

  222. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang XQ, Yang K, He YS, Lu L, Shen WF (2011) Receptor mediated elevation in FABP4 levels by advanced glycation end products induces cholesterol and triacylglycerol accumulation in THP-1 macrophages. Lipids 46:479–486

    Article  CAS  PubMed  Google Scholar 

  224. Li W, Zhang X, Sang H, Zhou Y, Shang C et al (2019) Effects of hyperglycemia on the progression of tumor diseases. J Exp Clin Cancer Res 38:327–327

    Article  PubMed  PubMed Central  Google Scholar 

  225. Garg SK, Maurer H, Reed K, Selagamsetty R (2014) Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes Obes Metab 16:97–110

    Article  CAS  PubMed  Google Scholar 

  226. Rojas A, González I, Morales E, Pérez-Castro R, Romero J et al (2011) Diabetes and cancer: looking at the multiligand/RAGE axis. World J Diabetes 2:108–113

    Article  PubMed  PubMed Central  Google Scholar 

  227. Menini S, Iacobini C, de Latouliere L, Manni I, Ionta V et al (2018) The advanced glycation end-product N()-carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol 245:197–208

    Article  CAS  PubMed  Google Scholar 

  228. Ahmed MU, Thorpe SR, Baynes JW (1986) Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 261:4889–4894

    Article  CAS  PubMed  Google Scholar 

  229. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712

    Article  CAS  PubMed  Google Scholar 

  231. Trayhurn P (2014) Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34:207–236

    Article  CAS  PubMed  Google Scholar 

  232. Trayhurn P, Alomar SY (2015) Oxygen deprivation and the cellular response to hypoxia in adipocytes—perspectives on white and brown adipose tissues in obesity. Front Endocrinol 6:19–19

    Article  Google Scholar 

  233. van Kruijsdijk RCM, van der Wall E, Visseren FLJ (2009) Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomark Prev 18:2569–2578

    Article  Google Scholar 

  234. Gopal P, Gosker HR, Theije CCd, Eurlings IM, Sell DR, et al. (2015) Effect of chronic hypoxia on RAGE and its soluble forms in lungs and plasma of mice. Biochim Biophys Acta 1852:992–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xu Y, Toure F, Qu W, Lin L, Song F et al (2010) Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem 285:23233–23240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Hiwatashi K, Ueno S, Abeyama K, Kubo F, Sakoda M et al (2008) A novel function of the receptor for advanced glycation end-products (RAGE) in association with tumorigenesis and tumor differentiation of HCC. Ann Surg Oncol 15:923–933

    Article  PubMed  Google Scholar 

  237. Park J, Scherer PE (2012) Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 122:4243–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5668

    Article  CAS  PubMed  Google Scholar 

  239. Rojas A, Añazco C, González I, Araya P (2018) Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis 39:515–521

    Article  CAS  PubMed  Google Scholar 

  240. Ryu TY, Park J, Scherer PE (2014) Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 38:330–336

    Article  PubMed  PubMed Central  Google Scholar 

  241. Rojas A, Gonzalez I, Añazco C (2017) AGE clearance mechanisms. Dietary ages and their role in health and disease. CRC Press, pp 37–50

  242. Rabbani N, Thornalley PJ (2011) Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22:309–317

    Article  CAS  PubMed  Google Scholar 

  243. Cai W, Ramdas M, Zhu L, Chen X, Striker GE et al (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A 109:15888–15893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Goldberg R, Meirovitz A, Abecassis A, Hermano E, Rubinstein AM et al (2019) Regulation of heparanase in diabetes-associated pancreatic carcinoma. Front Oncol 9:1405

    Article  PubMed  PubMed Central  Google Scholar 

  245. Vazzana N, Santilli F, Cuccurullo C, Davi G (2009) Soluble forms of RAGE in internal medicine. Intern Emerg Med 4:389–401

    Article  PubMed  Google Scholar 

  246. Jiao L, Weinstein SJ, Albanes D, Taylor PR, Graubard BI et al (2011) Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res 71:3582–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Berger J, Moller DE (2002) The Mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  Google Scholar 

  248. Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N et al (2018) PPAR agonists and metabolic syndrome: an established role? Int J Mol Sci 19:1197

    Article  PubMed Central  Google Scholar 

  249. Azhar S (2010) Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Futur Cardiol 6:657–691

    Article  CAS  Google Scholar 

  250. Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A (2016) Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 22:2441–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Michalik L, Wahli W (2008) PPARs mediate lipid signaling in inflammation and cancer. PPAR Res 2008:134059–134059

    Article  PubMed  PubMed Central  Google Scholar 

  252. Gou Q, Gong X, Jin J, Shi J, Hou Y (2017) Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 8:60704–60709

    Article  PubMed  PubMed Central  Google Scholar 

  253. Wang D, DuBois RN (2014) PPARδ and PGE(2) signaling pathways communicate and connect inflammation to colorectal cancer. Inflammation Cell Signaling 1. https://doi.org/10.14800/ics.14338

  254. Wang D, Wang H, Shi Q, Katkuri S, Walhi W et al (2004) Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor δ. Cancer Cell 6:285–295

    Article  CAS  PubMed  Google Scholar 

  255. Wang D, Fu L, Ning W, Guo L, Sun X et al (2014) Peroxisome proliferator-activated receptor δ promotes colonic inflammation and tumor growth. Proc Natl Acad Sci U S A 111:7084–7089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Reinartz S, Finkernagel F, Adhikary T, Rohnalter V, Schumann T et al (2016) A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome. Genome Biol 17:108–108

    Article  PubMed  PubMed Central  Google Scholar 

  257. Yuan H, Lu J, Xiao J, Upadhyay G, Umans R et al (2013) PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation. Cancer Res 73:4349–4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zuo X, Xu W, Xu M, Tian R, Moussalli MJ et al (2017) Metastasis regulation by PPARD expression in cancer cells. JCI Insight 2:e91419

    Article  PubMed  PubMed Central  Google Scholar 

  259. Liu Y, Colby JK, Zuo X, Jaoude J, Wei D et al (2018) The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor. Int J Mol Sci 19:3339

    Article  PubMed Central  Google Scholar 

  260. Shanmugam N, Reddy MA, Natarajan R (2008) Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. J Biol Chem 283:36221–36233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Castellone MD (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin—catenin signaling axis. Science 310:1504–1510

    Article  CAS  PubMed  Google Scholar 

  262. Cuspidi C, Meani S, Fusi V, Severgnini B, Valerio C et al (2004) Metabolic syndrome and target organ damage in untreated essential hypertensives. J Hypertens 22:1991–1998

    Article  CAS  PubMed  Google Scholar 

  263. Schillaci G, Pirro M, Vaudo G, Gemelli F, Marchesi S et al (2004) Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol 43:1817–1822

    Article  PubMed  Google Scholar 

  264. Yanai H, Tomono Y, Ito K, Furutani N, Yoshida H et al (2008) The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr J 7:10–10

    Article  PubMed  PubMed Central  Google Scholar 

  265. Mendizábal Y, Llorens S, Nava E (2013) Hypertension in metabolic syndrome: vascular pathophysiology. Int J Hypertens 2013:230868

    Article  PubMed  PubMed Central  Google Scholar 

  266. Christakoudi S, Kakourou A, Markozannes G, Tzoulaki I, Weiderpass E et al (2020) Blood pressure and risk of cancer in the European prospective investigation into cancer and nutrition. Int J Cancer 146:2680–2693

    Article  CAS  PubMed  Google Scholar 

  267. Sobczuk P, Szczylik C, Porta C, Czarnecka AM (2017) Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 14:5059–5068

    PubMed  PubMed Central  Google Scholar 

  268. Yang Y, Lynch BM, Hodge AM, Liew D, McLean CA et al (2017) Blood pressure and risk of breast cancer, overall and by subtypes. J Hypertens 35:1371–1380

    Article  CAS  PubMed  Google Scholar 

  269. Furberg A-S, Thune I (2003) Metabolic abnormalities (hypertension, hyperglycemia and overweight), lifestyle (high energy intake and physical inactivity) and endometrial cancer risk in a Norwegian cohort. Int J Cancer 104:669–676

    Article  CAS  PubMed  Google Scholar 

  270. Kocher NJ, Rjepaj C, Robyak H, Lehman E, Raman JD (2016) Hypertension is the primary component of metabolic syndrome associated with pathologic features of kidney cancer. World J Urol 35:67–72

    Article  PubMed  Google Scholar 

  271. Ruparelia N, Chai JT, Fisher EA, Choudhury RP (2017) Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 14:133–144

    Article  CAS  PubMed  Google Scholar 

  272. Ridker PM (2018) Clinician’s guide to reducing inflammation to reduce atherothrombotic risk. J Am Coll Cardiol 72:3320–3331

    Article  PubMed  Google Scholar 

  273. Masoudkabir F, Sarrafzadegan N, Gotay C, Ignaszewski A, Krahn AD et al (2017) Cardiovascular disease and cancer: evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis 263:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Peng H, Yeh F, de Simone G, Best LG, Lee ET et al (2017) Relationship between plasma plasminogen activator inhibitor-1 and hypertension in American Indians: findings from the Strong Heart Study. J Hypertens 35:1787–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Basurto L, Díaz A, Rodriguez A, Robledo A, Vega S et al (2019) Circulating levels of plasminogen activator inhibitor-1 are associated with metabolic syndrome rather than with menopause. Gynecol Endocrinol 35:909–912

    Article  CAS  PubMed  Google Scholar 

  276. Wang L, Chen L, Liu Z, Liu Y, Luo M et al (2018) PAI-1 exacerbates white adipose tissue dysfunction and metabolic dysregulation in high fat diet-induced obesity. Front Pharmacol 9:1087–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Coudriet GM, Stoops J, Orr AV, Bhushan B, Koral K et al (2019) A noncanonical role for plasminogen activator inhibitor type 1 in obesity-induced diabetes. Am J Pathol 189:1413–1422

    Article  CAS  PubMed  Google Scholar 

  278. Fortenberry YM, Brandal SM, Carpentier G, Hemani M, Pathak AP (2016) Intracellular expression of PAI-1 specific aptamers alters breast cancer cell migration, invasion and angiogenesis. PLoS One 11:e0164288

    Article  PubMed  PubMed Central  Google Scholar 

  279. Völker H-U, Weigel M, Strehl A, Frey L (2018) Levels of uPA and PAI-1 in breast cancer and its correlation to Ki67-index and results of a 21-multigene-array. Diagn Pathol 13:67–67

    Article  PubMed  PubMed Central  Google Scholar 

  280. Gregório PC, Favretto G, Sassaki GL, Cunha RS, Becker-Finco A et al (2018) Sevelamer reduces endothelial inflammatory response to advanced glycation end products. Clin Kidney J 11:89–98

    Article  PubMed  Google Scholar 

  281. Fukami K, Yamagishi S-I, Okuda S (2014) Role of AGEs-RAGE system in cardiovascular disease. Curr Pharm Des 20:2395–2402

    Article  CAS  PubMed  Google Scholar 

  282. Yamagishi S, Fujimori H, Yonekura H, Yamamoto Y, Yamamoto H (1998) Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia 41:1435–1441

    Article  CAS  PubMed  Google Scholar 

  283. Uchida Y, K-i O, Yoshioka T, Irie K, Muraki T et al (2003) Cellular carbonyl stress enhances the expression of plasminogen activator inhibitor-1 in rat white adipocytes via reactive oxygen species-dependent pathway. J Biol Chem 279:4075–4083

    Article  PubMed  Google Scholar 

  284. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E et al (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–2660

    Article  CAS  PubMed  Google Scholar 

  285. Abou Ziki MD, Mani A (2019) The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res (New York, NY) 70:18–25

    Article  CAS  Google Scholar 

  286. Arnold AC, Robertson D (2015) Defective Wnt signaling: a potential contributor to cardiometabolic disease? Diabetes 64:3342–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Abou Ziki MD, Mani A (2017) Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis 262:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Zhao Y, Wang C, Wang C, Hong X, Miao J et al (2018) An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Sci Rep 8:8996–8996

    Article  PubMed  PubMed Central  Google Scholar 

  289. Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH et al (2019) WNT signaling in disease. Cells 8:826

    Article  CAS  PubMed Central  Google Scholar 

  290. Ghosh N, Hossain U, Mandal A, Sil PC (2019) The Wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci 1443:54–74

    Article  PubMed  Google Scholar 

  291. Cheng X, Xu X, Chen D, Zhao F, Wang W (2019) Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 110:473–481

    Article  CAS  PubMed  Google Scholar 

  292. Sack U, Walther W, Scudiero D, Selby M, Aumann J et al (2011) S100A4-induced cell motility and metastasis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell 22:3344–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Zha H, Li X, Sun H, Duan L, Yuan S et al (2019) S100A9 promotes the proliferation and migration of cervical cancer cells by inducing epithelial-mesenchymal transition and activating the Wnt/β-catenin pathway. Int J Oncol 55:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Zhao Z, Wang H, Zhang L, Mei X, Hu J et al (2017) Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the Wnt pathway. Anti-Cancer Drugs 28:187–196

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Rojas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garay-Sevilla, M.E., Gomez-Ojeda, A., González, I. et al. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 476, 1555–1573 (2021). https://doi.org/10.1007/s11010-020-04022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04022-z

Keywords

Navigation