Skip to main content

Advertisement

Log in

MMP1 3′UTR facilitates the proliferation and migration of human oral squamous cell carcinoma by sponging miR-188-5p to up-regulate SOX4 and CDK4

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Growing evidence indicates that the non-coding 3′-untranslated region (3′UTR) of genes acts as competing endogenous RNAs (ceRNAs) to exert their roles in a number of diseases, including cancer. In the present study, MMP1 messenger RNA was identified to be significantly up-regulated in oral squamous cell carcinoma (OSCC) tissues, and both MMP1 and its 3′UTR promoted tumor growth and cell motility. Further mechanism investigations indicated that MMP1 3′UTR was able to antagonize miR-188-5p; in addition, overexpression of MMP1 3′UTR up-regulated the expression level of SOX4 and CDK4, target genes of miR-188-5p, which have also been identified as oncogenic driver genes in OSCC. Therefore, a ceRNA regulatory network among MMP1, SOX4, and CDK4 mediated via competing for binding to miR-188-5p was proved. Taken together, the present study demonstrates for the first time that MMP1 mRNA participates in the development of OSCC via ceRNA regulatory mechanism and genes involved in the ceRNA network may provide a novel avenue for target therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Rivera C, Venegas B (2014) Histological and molecular aspects of oral squamous cell carcinoma (review). Oncol Lett 8:7–11. https://doi.org/10.3892/ol.2014.2103

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vojtechova Z, Sabol I, Salakova M, Turek L, Grega M, Smahelova J, Vencalek O, Lukesova E, Klozar J, Tachezy R (2016) Analysis of the integration of human papillomaviruses in head and neck tumours in relation to patients’ prognosis. Int J Cancer 138:386–395. https://doi.org/10.1002/ijc.29712

    Article  CAS  PubMed  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  4. Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45:309–316. https://doi.org/10.1016/j.oraloncology.2008.06.002

    Article  PubMed  Google Scholar 

  5. Wang B, Zhang S, Yue K, Wang XD (2013) The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chin J Cancer 32:614–618. https://doi.org/10.5732/cjc.012.10219

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kademani D (2007) Oral cancer. Mayo Clin Proc 82:878–887. https://doi.org/10.4065/82.7.878

    Article  PubMed  Google Scholar 

  7. Jerjes W, Upile T, Petrie A, Riskalla A, Hamdoon Z, Vourvachis M, Karavidas K, Jay A, Sandison A, Thomas GJ, Kalavrezos N, Hopper C (2010) Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1–T2 oral squamous cell carcinoma patients. Head Neck Oncol 2:9. https://doi.org/10.1186/1758-3284-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. https://doi.org/10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  9. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. https://doi.org/10.1038/nrc745

    Article  CAS  PubMed  Google Scholar 

  10. Suhr ML, Dysvik B, Bruland O, Warnakulasuriya S, Amaratunga AN, Jonassen I, Vasstrand EN, Ibrahim SO (2007) Gene expression profile of oral squamous cell carcinomas from Sri Lankan betel quid users. Oncol Rep 18:1061–1075

    CAS  PubMed  Google Scholar 

  11. Yen CY, Chen CH, Chang CH, Tseng HF, Liu SY, Chuang LY, Wen CH, Chang HW (2009) Matrix metalloproteinases (MMP) 1 and MMP10 but not MMP12 are potential oral cancer markers. Biomarkers 14:244–249. https://doi.org/10.1080/13547500902829375

    Article  CAS  PubMed  Google Scholar 

  12. Reis PP, Waldron L, Perez-Ordonez B, Pintilie M, Galloni NN, Xuan Y, Cervigne NK, Warner GC, Makitie AA, Simpson C, Goldstein D, Brown D, Gilbert R, Gullane P, Irish J, Jurisica I, Kamel-Reid S (2011) A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence. BMC Cancer 11:437. https://doi.org/10.1186/1471-2407-11-437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao C, Zou H, Zhang J, Wang J, Liu H (2018) An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma. Oncol Rep 40:2637–2647. https://doi.org/10.3892/or.2018.6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song YX, Sun JX, Zhao JH, Yang YC, Shi JX, Wu ZH, Chen XW, Gao P, Miao ZF, Wang ZN (2017) Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat Commun 8:289. https://doi.org/10.1038/s41467-017-00304-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park HJ, Ji P, Kim S, Xia Z, Rodriguez B, Li L, Su J, Chen K, Masamha CP, Baillat D, Fontes-Garfias CR, Shyu AB, Neilson JR, Wagner EJ, Li W (2018) 3’ UTR shortening represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk. Nat Genet 50:783–789. https://doi.org/10.1038/s41588-018-0118-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, Liao QX, Zhang H, Zeng LS, Cui SZ (2018) LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/beta-catenin pathway. Mol Cancer 17:126. https://doi.org/10.1186/s12943-018-0874-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. https://doi.org/10.1038/nature12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  20. Kumar MS, Armenteros-Monterroso E, East P, Chakravorty P, Matthews N, Winslow MM, Downward J (2014) HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 505:212–217. https://doi.org/10.1038/nature12785

    Article  CAS  PubMed  Google Scholar 

  21. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52:710–718. https://doi.org/10.1136/jmedgenet-2015-103334

    Article  CAS  PubMed  Google Scholar 

  22. Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381. https://doi.org/10.1016/j.cell.2011.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng L, Li X, Chou J, Xiang C, Guo Q, Zhang Z, Guo X, Gao L, Xing Y, Xi T (2018) StarD13 3′-untranslated region functions as a ceRNA for TP53INP1 in prohibiting migration and invasion of breast cancer cells by regulating miR-125b activity. Eur J Cell Biol 97:23–31. https://doi.org/10.1016/j.ejcb.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  24. Liu K, Guo L, Guo Y, Zhou B, Li T, Yang H, Yin R, Xi T (2015) AEG-1 3′-untranslated region functions as a ceRNA in inducing epithelial–mesenchymal transition of human non-small cell lung cancer by regulating miR-30a activity. Eur J Cell Biol 94:22–31. https://doi.org/10.1016/j.ejcb.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  25. Chen PC, Yu CC, Huang WY, Huang WH, Chuang YM, Lin RI, Lin JMJ, Lin HY, Jou YC, Shen CH, Chan MWY (2019) c-Myc acts as a competing endogenous RNA to sponge miR-34a, in the upregulation of CD44, in urothelial carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers11101457

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW (2016) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv303

    Article  PubMed  Google Scholar 

  27. Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, Shao T, Zhang J, Wang L, Li X (2015) The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res 43:8169–8182. https://doi.org/10.1093/nar/gkv853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS ONE 9:e111988. https://doi.org/10.1371/journal.pone.0111988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197. https://doi.org/10.1016/j.molcel.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  31. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395. https://doi.org/10.1016/j.cell.2011.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. https://doi.org/10.1038/nature09144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357. https://doi.org/10.1016/j.cell.2011.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Zhang H, Yang F, Qiu R, Zhao X, Gong Z, Yu W, Zhou B, Shen B, Zhu W (2019) miR-188-5p suppresses cellular proliferation and migration via IL6ST: a potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol. https://doi.org/10.1002/jcp.29367

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peng Y, Shen X, Jiang H, Chen Z, Wu J, Zhu Y, Zhou Y, Li J (2018) miR-188-5p suppresses gastric cancer cell proliferation and invasion via targeting ZFP91. Oncol Res 27:65–71. https://doi.org/10.3727/096504018X15191223015016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yan S, Yue Y, Wang J, Li W, Sun M, Gu C, Zeng L (2019) LINC00668 promotes tumorigenesis and progression through sponging miR-188-5p and regulating USP47 in colorectal cancer. Eur J Pharmacol 858:172464. https://doi.org/10.1016/j.ejphar.2019.172464

    Article  CAS  PubMed  Google Scholar 

  38. Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J (2010) Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med 39:793–799. https://doi.org/10.1111/j.1600-0714.2010.00909.x

    Article  PubMed  Google Scholar 

  39. Lindberg D, Hessman O, Akerstrom G, Westin G (2007) Cyclin-dependent kinase 4 (CDK4) expression in pancreatic endocrine tumors. Neuroendocrinology 86:112–118. https://doi.org/10.1159/000106762

    Article  CAS  PubMed  Google Scholar 

  40. Dobashi Y, Goto A, Fukayama M, Abe A, Ooi A (2004) Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma. Int J Cancer 110:532–541. https://doi.org/10.1002/ijc.20167

    Article  CAS  PubMed  Google Scholar 

  41. Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, Xie S, Liu Q, Liu T, Huang J, Xie W, Li Z, Zhao Y, Wang E, Marincola FM, Yao K (2008) Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med 6:32. https://doi.org/10.1186/1479-5876-6-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bilir B, Kucuk O, Moreno CS (2013) Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med 11:280. https://doi.org/10.1186/1479-5876-11-280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, Feng J, Zhang Y, Gao H, Liu DX, Lu J, Huang B (2012) SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res 72:4597–4608. https://doi.org/10.1158/0008-5472.CAN-12-1045

    Article  CAS  PubMed  Google Scholar 

  44. Vervoort SJ, Lourenco AR, Tufegdzic Vidakovic A, Mocholi E, Sandoval JL, Rueda OM, Frederiks C, Pals C, Peeters JGC, Caldas C, Bruna A, Coffer PJ (2018) SOX4 can redirect TGF-beta-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis. Nucleic Acids Res 46:9578–9590. https://doi.org/10.1093/nar/gky755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by Joint Funds for the innovation of Science and Technology, Fujian province (Grant Number: 2018Y9012).

Author information

Authors and Affiliations

Authors

Contributions

CW and WC contributed to design this study. CW, CM, YL, and ZC conducted this study and were responsible for analysis and interpretation of the data. CW and WC contributed to manuscript drafting. WC revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Weihui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the Ethics Committee of Fujian Medical University Union Hospital (Fuzhou, China; Approval No. 2019KJTYL037).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3384 kb)

Supplementary Figure S1. MMP1 is the target gene of miR-9-5p. A, The expression of miR-9-5p was examined in 10 pairs of OSCC tissues and the matched adjacent normal tissues by qRT-PCR. B, The relative luciferase activity was detected in the 293T cells that co-transfected with luciferase reporter constructs containing MMP1 3′UTR and miR-9-5p mimics. C, Detection of miR-9-5p using qRT-PCR in the Tca8113 cells stably expressing MMP1 3′UTR, stable cell lines containing empty vector were used as control. All values are represented as means ± SEM of the indicated number of measurements. Statistical analysis was conducted using Student t-test. *p<0.05, **p<0.01, ***p<0.001.

Supplementary file2 (TIF 6581 kb)

Supplementary Table S1. The primer sequences used for qRT-PCR.

Supplementary file3 (TIF 4664 kb)

Supplementary Table S2. Differentially expressed miRNAs identified in OSCC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Mao, C., Lai, Y. et al. MMP1 3′UTR facilitates the proliferation and migration of human oral squamous cell carcinoma by sponging miR-188-5p to up-regulate SOX4 and CDK4. Mol Cell Biochem 476, 785–796 (2021). https://doi.org/10.1007/s11010-020-03944-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03944-y

Keywords

Navigation