Skip to main content

Advertisement

Log in

Circ_0058063 Contributed to Oral Squamous Cell Carcinoma Development by Sponging miR-145 and Regulating PI3K/AKT Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) are key regulators of oral squamous cell carcinoma (OSCC) progression. In this study, we aimed to clarify the regulatory roles of circ_0058063 and its effect on tumorigenesis in OSCC.

Methods

Quantitative real-time polymerase chain reaction was conducted to determine the expression levels of microRNA (miR)-145-5p and circ_0058063 in OSCC. Cell viability, adhesion, migration, and epithelial–mesenchymal transition (EMT) of OSCC cells were assessed using cell counting kit-8, cell adhesion, and transwell assays. Western blotting was performed to determine the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) phosphorylation levels. Xenograft tumor models were constructed to evaluate the tumorigenicity of OSCC cells in vivo. In addition, the interaction between circ_0058063 and miR-145-5p was validated via luciferase reporter and RNA immunoprecipitation assays.

Results

Expression levels of circ_0058063 were elevated, whereas those of miR-145-5p were decreased in OSCC. Upregulation of circ_0058063 levels enhanced the viability, adhesion, migration, and EMT of OSCC cells in vitro and promoted tumorigenicity in vivo. Moreover, circ_0058063 promoted OSCC growth by upregulating the PI3K and AKT phosphorylation levels. miR-145-5p overexpression considerably inhibited the PI3K/AKT pathway and decreased OSCC cell viability, adhesion, migration, and EMT. Mechanistically, circ_0058063 sponged miR-145-5p and activated the PI3K/AKT pathway in OSCC cells.

Conclusion

Our results revealed that circ_0058063 functions as an oncogene via regulation of the PI3K/AKT pathway by targeting miR-145-5p in OSCC, suggesting its potential for OSCC diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed throughout this present investigation are available from the corresponding author upon proper request.

References

  1. Carnielli, C. M., Macedo, C. C. S., De Rossi, T., Granato, D. C., Rivera, C., Domingues, R. R., Pauletti, B. A., Yokoo, S., Heberle, H., Busso-Lopes, A. F., Cervigne, N. K., Sawazaki-Calone, I., Meirelles, G. V., Marchi, F. A., Telles, G. P., Minghim, R., Ribeiro, A. C. P., Brandão, T. B., de Castro, G., Jr., … Paes Leme, A. F. (2018). Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nature Communications, 9, 3598.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Almangush, A., Mäkitie, A. A., Triantafyllou, A., de Bree, R., Strojan, P., Rinaldo, A., Hernandez-Prera, J. C., Suárez, C., Kowalski, L. P., Ferlito, A., & Leivo, I. (2020). Staging and grading of oral squamous cell carcinoma: An update. Oral Oncology, 107, 104799.

    Article  PubMed  Google Scholar 

  3. Alkhadar, H., Macluskey, M., White, S., Ellis, I., & Gardner, A. (2021). Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 50, 378–384.

    Article  CAS  Google Scholar 

  4. Wang, J., Wang, Y., Kong, F., Han, R., Song, W., Chen, D., Bu, L., Wang, S., Yue, J., & Ma, L. (2020). Identification of a six-gene prognostic signature for oral squamous cell carcinoma. Journal of Cellular Physiology, 235, 3056–3068.

    Article  CAS  PubMed  Google Scholar 

  5. Vitório, J. G., Duarte-Andrade, F. F., Dos SantosFontes Pereira, T., Fonseca, F. P., Amorim, L. S. D., Martins-Chaves, R. R., Gomes, C. C., Canuto, G. A. B., & Gomez, R. S. (2020). Metabolic landscape of oral squamous cell carcinoma. Metabolomics: Official Journal of the Metabolomic Society, 16, 105.

    Article  PubMed  Google Scholar 

  6. Liu, L., Chen, J., Cai, X., Yao, Z., & Huang, J. (2019). Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surgical Oncology, 31, 90–97.

    Article  PubMed  Google Scholar 

  7. Tang, X., Ren, H., Guo, M., Qian, J., Yang, Y., & Gu, C. (2021). Review on circular RNAs and new insights into their roles in cancer. Computational and Structural Biotechnology Journal, 19, 910–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhong, Y., Du, Y., Yang, X., Mo, Y., Fan, C., Xiong, F., Ren, D., Ye, X., Li, C., Wang, Y., Wei, F., Guo, C., Wu, X., Li, X., Li, Y., Li, G., Zeng, Z., & Xiong, W. (2018). Circular RNAs function as ceRNAs to regulate and control human cancer progression. Molecular Cancer, 17, 79.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Du, W. W., Zhang, C., Yang, W., Yong, T., Awan, F. M., & Yang, B. B. (2017). Identifying and characterizing circRNA-protein interaction. Theranostics, 7, 4183–4191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, Y., Jia, X., & Xu, J. (2020). The new function of circRNA: Translation. Clinical & Translational Oncology, 22, 2162–2169.

    Article  CAS  Google Scholar 

  11. Lin, J., Cai, D., Li, W., Yu, T., Mao, H., Jiang, S., & Xiao, B. (2019). Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clinical Biochemistry, 74, 60–68.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, W., Cui, Y., Liu, L., Qi, X., Liu, J., Ma, S., Hu, X., Zhang, Z., Wang, Y., Li, H., Wang, Z., Liu, Z., & Wu, J. (2020). Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death and Differentiation, 27, 919–933.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Y., Ci, H. S., Mao, Y. L., Li, J. W., & Zuo, J. H. (2020). CircRNA_002178 promotes the proliferation and migration of oral squamous cell carcinoma cells by activating the Akt/mTOR pathway. European Review for Medical and Pharmacological Sciences, 24, 6122–6130.

    CAS  PubMed  Google Scholar 

  14. Ai, Y., Song, J., Wei, H., Tang, Z., Li, X., Lv, X., Luo, H., Wu, S., & Zou, C. (2021). circ_0001461 promotes oral squamous cell carcinoma progression through miR-145/TLR4/NF-κB axis. Biochemical and Biophysical Research Communications, 566, 108–114.

    Article  CAS  PubMed  Google Scholar 

  15. Sun, M., Zhao, W., Chen, Z., Li, M., Li, S., Wu, B., & Bu, R. (2019). Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p. Journal of Cellular Physiology, 234, 4812–4824.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, Y., Chen, Y., Jiang, H., Zhang, H., Wang, H., Xu, J., & Yu, Z. (2020). Circ_0058063 upregulates GLUT1 expression and promotes glucose-uptake in esophageal squamous-cell carcinomas. Journal of Thoracic Disease, 12, 925–931.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, X., Ding, L., Gu, G., Zheng, C., Pan, C., Zheng, Q., & Xiang, T. (2021). Role and mechanism of circ_0058063/miR-635 axis in the malignant phenotype of multiple myeloma RPMI8226 cells. Evidence-Based Complementary and Alternative Medicine: ECAM, 2021, 4630934.

    PubMed  Google Scholar 

  18. Mishra, S., Yadav, T., & Rani, V. (2016). Exploring miRNA based approaches in cancer diagnostics and therapeutics. Critical Reviews in Oncology/Hematology, 98, 12–23.

    Article  PubMed  Google Scholar 

  19. Tang, W., Zhang, X., Tan, W., Gao, J., Pan, L., Ye, X., Chen, L., & Zheng, W. (2019). miR-145-5p Suppresses breast cancer progression by inhibiting SOX2. The Journal of Surgical Research, 236, 278–287.

    Article  CAS  PubMed  Google Scholar 

  20. Xin, H., Feng, Z., & Yao, C. (2022). SNHG1/miR-145-5p/KLF5 axis participates in regulating the proliferation and migration of oral squamous cell cancer. Journal of Healthcare Engineering, 2022, 2053271.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peng, Q. S., Cheng, Y. N., Zhang, W. B., Fan, H., Mao, Q. H., & Xu, P. (2020). circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death & Disease, 11, 112.

    Article  CAS  Google Scholar 

  22. Wang, J., Jiang, C., Li, N., Wang, F., Xu, Y., Shen, Z., Yang, L., Li, Z., & He, C. (2020). The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death & Disease, 11, 682.

    Article  CAS  Google Scholar 

  23. Gao, L., Zhao, C., Li, S., Dou, Z., Wang, Q., Liu, J., Ren, W., & Zhi, K. (2019). circ-PKD2 inhibits carcinogenesis via the miR-204-3p/APC2 axis in oral squamous cell carcinoma. Molecular Carcinogenesis, 58, 1783–1794.

    Article  CAS  PubMed  Google Scholar 

  24. Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D., & Lawrie, C. H. (2019). CircRNAs and cancer: Biomarkers and master regulators. Seminars in Cancer Biology, 58, 90–99.

    Article  CAS  PubMed  Google Scholar 

  25. Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., Jiang, B., Feng, J., Li, J., & Gu, Y. (2019). PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Molecular Medicine Reports, 19, 783–791.

    CAS  PubMed  Google Scholar 

  26. King, D., Yeomanson, D., & Bryant, H. E. (2015). PI3King the lock: Targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. Journal of Pediatric Hematology/Oncology, 37, 245–251.

    Article  CAS  PubMed  Google Scholar 

  27. Hoxhaj, G., & Manning, B. D. (2020). The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews. Cancer, 20, 74–88.

    Article  CAS  PubMed  Google Scholar 

  28. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M., & Bilanges, B. (2010). The emerging mechanisms of isoform-specific PI3K signalling. Nature Reviews. Molecular Cell Biology, 11, 329–341.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, X., Yu, J., Tian, H., Shan, Z., Liu, W., Pan, Z., & Ren, J. (2019). Circle RNA hsa_circRNA_100290 serves as a ceRNA for miR-378a to regulate oral squamous cell carcinoma cells growth via Glucose transporter-1 (GLUT1) and glycolysis. Journal of Cellular Physiology, 234, 19130–19140.

    Article  CAS  PubMed  Google Scholar 

  30. Yu, J., Lou, Y., Hou, M., Ma, X., & Wang, L. (2022). Circ_0058063 contributes to oral squamous cell carcinoma development by sponging miR-145-5p and upregulating SERPINE1. Journal of Oral Pathology & Medicine, 51, 630–637.

    Article  CAS  Google Scholar 

  31. Cheng, T., Huang, F., Zhang, Y., & Zhou, Z. (2023). Knockdown of circGOLPH3 inhibits cell progression and glycolysis by targeting miR-145-5p/lysine demethylase 2A (KDM2A) axis in oral squamous cell carcinoma. Head & Neck, 45, 225–236.

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the Wuhan Municipal Health Fund (Project Number: S202204200035), [Grant Number: WZ22B05].

Author information

Authors and Affiliations

Authors

Contributions

JZ conducted the experiments and data analysis. SJ designed this study and formed the methodology. JZ did investigation. SJ authored the paper. This manuscript was reviewed and revised by JZ and SJ. This work has been reviewed and approved by all authors.

Corresponding author

Correspondence to Song Jin.

Ethics declarations

Conflict of interest

The authors stated that they did not have any conflicts of interest.

Ethical Approval

Wuhan Fourth Hospital's Ethics Committee approved this study (Wuhan, China). The World Medical Association's Helsinki Declaration was observed during the conduct of this study. All enrolled patients signed informed consent papers.

The animal experiments had been approved by the Animal Protection and Use Committee of the Wuhan Fourth Hospital. The ARRIVE standards have been strictly followed in all of the animal investigations.

Consent to Participations

All patients signed written informed consent.

Consent for Publications

Consent for publication was obtained from the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Jin, S. Circ_0058063 Contributed to Oral Squamous Cell Carcinoma Development by Sponging miR-145 and Regulating PI3K/AKT Pathway. Mol Biotechnol 65, 2049–2060 (2023). https://doi.org/10.1007/s12033-023-00715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00715-0

Keywords

Navigation