Skip to main content

Advertisement

Log in

Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is a malignancy with elevated prevalence and somber prognosis due to the fact that most of the patients are diagnosed at an advanced stage. p53 has a crucial role in proliferation and apoptosis during the occurrence and development of numerous malignant tumors. The impact of mutated p53 on the development and progression of OSCC is unclear and might have therapeutic implications. Using an in vitro RNA interference experiment, we have evaluated the impact of p53 knockdown on cell viability, apoptosis, migration, and gene expression for key genes involved in apoptosis and angiogenesis. We observed that inhibiting the expression of p53 decreased the proliferation ability and induced apoptosis/autophagy in SSC-4 cells. Moreover, we observed that this has decreased migration and has blocked the expression of VEGF. In conclusion, our research provides a proof that a direct connection between p53 knockdown and OSCC cell death can be established, therefore opening new potential directions in OSCC molecular therapeutics and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stoicanescu D, Andreescu N, Belengeanu A, Meszaros N, Cornianu M (2013) Assessment of p53 and HER-2/neu genes status and protein products in oral squamous cell carcinomas. Rom J Morphol Embryol 54:1107–1113

    PubMed  Google Scholar 

  2. Zeng XT, Luo W, Geng PL, Guo Y, Niu YM, Leng WD (2014) Association between the TP53 codon 72 polymorphism and risk of oral squamous cell carcinoma in Asians: a meta-analysis. BMC Cancer 14:469. doi:10.1186/1471-2407-14-469

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsui IF, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL (2009) Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer 125:2219–2228. doi:10.1002/ijc.24611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walerych D, Napoli M, Collavin L, Del Sal G (2012) The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 33:2007–2017. doi:10.1093/carcin/bgs232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Royds JA, Iacopetta B (2006) p53 and disease: when the guardian angel fails. Cell Death Differ 13:1017–1026. doi:10.1038/sj.cdd.4401913

    Article  CAS  PubMed  Google Scholar 

  6. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. doi:10.1101/cshperspect.a001008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165. doi:10.1038/sj.onc.1210302

    Article  CAS  PubMed  Google Scholar 

  8. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629. doi:10.1002/humu.20495

    Article  CAS  PubMed  Google Scholar 

  9. Parrales A, Iwakuma T (2015) Targeting oncogenic mutant p53 for cancer therapy. Front Oncol 5:288. doi:10.3389/fonc.2015.00288

    Article  PubMed  PubMed Central  Google Scholar 

  10. Besaratinia A, Pfeifer GP (2010) Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing. FASEB J 24:2612–2619. doi:10.1096/fj.10-157263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I (2013) p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem 381:61–68. doi:10.1007/s11010-013-1688-5

    Article  CAS  PubMed  Google Scholar 

  12. Berindan-Neagoe I, Braicu C, Irimie A (2012) Combining the chemotherapeutic effects of epigallocatechin 3-gallate with siRNA-mediated p53 knock-down results in synergic pro-apoptotic effects. Int J Nanomedicine 7:6035–6047. doi:10.2147/ijn.s36523

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan CC, Wang TY, Cheng YA, Jiang SS, Cheng CW, Lee AY, Kao TY (2013) Expression of E-cadherin, twist, and p53 and their prognostic value in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol 139:1735–1744. doi:10.1007/s00432-013-1499-9

    Article  CAS  PubMed  Google Scholar 

  14. Brunotto M, Zarate AM, Bono A, Barra JL, Berra S (2014) Risk genes in head and neck cancer: a systematic review and meta-analysis of last 5 years. Oral Oncol 50:178–188. doi:10.1016/j.oraloncology.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  15. Rivera C, Venegas B (2014) Histological and molecular aspects of oral squamous cell carcinoma (Review). Oncol Lett 8:7–11. doi:10.3892/ol.2014.2103

    PubMed  PubMed Central  Google Scholar 

  16. Zhao L, Yu Y, Wu J, Bai J, Zhao Y, Li C, Sun W, Wang X (2014) Role of EZH2 in oral squamous cell carcinoma carcinogenesis. Gene 537:197–202. doi:10.1016/j.gene.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Iulia Irimie A, Braicu C, Zanoaga O, Pileczki V, Soritau O, Berindan-Neagoe I, Septimiu Campian R (2015) Inhibition of tumor necrosis factor alpha using RNA interference in oral squamous cell carcinoma. J BUON 20:1107–1114

    PubMed  Google Scholar 

  18. Hatok J, Babusikova E, Matakova T, Mistuna D, Dobrota D, Racay P (2009) In vitro assays for the evaluation of drug resistance in tumor cells. Clin Exp Med 9:1–7. doi:10.1007/s10238-008-0011-3

    Article  CAS  PubMed  Google Scholar 

  19. Berindan-Neagoe I, Chiorean R, Braicu C, Florian IS, Leucuta D, Crisan D, Cocis A, Balacescu O, Irimie A (2012) Quantitative mRNA expression of genes involved in angiogenesis, coagulation and inflammation in multiforme glioblastoma tumoral tissue versus peritumoral brain tissue: lack of correlation with clinical data. Eur Cytokine Netw 23:45–55. doi:10.1684/ecn.2012.0302

    CAS  PubMed  Google Scholar 

  20. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    CAS  PubMed  Google Scholar 

  21. Crowe DL, Sinha UK (2006) p53 apoptotic response to DNA damage dependent on bcl2 but not bax in head and neck squamous cell carcinoma lines. Head Neck 28:15–23. doi:10.1002/hed.20319

    Article  PubMed  Google Scholar 

  22. Lin Y, Brown L, Hedley DW, Barber DL, Benchimol S (2002) The death-promoting activity of p53 can be inhibited by distinct signaling pathways. Blood 100:3990–4000. doi:10.1182/blood-2002-02-0504

    Article  CAS  PubMed  Google Scholar 

  23. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  24. Kano M, Matsushita K, Rahmutulla B, Yamada S, Shimada H, Kubo S, Hiwasa T, Matsubara H, Nomura F (2016) Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams. Gene Ther 23:50–56. doi:10.1038/gt.2015.84

    Article  CAS  PubMed  Google Scholar 

  25. Braicu C, Pileczki V, Pop L, Petric RC, Chira S, Pointiere E, Achimas-Cadariu P, Berindan-Neagoe I (2015) Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model. PLoS One 10:e0120936. doi:10.1371/journal.pone.0120936

    Article  PubMed  PubMed Central  Google Scholar 

  26. Denton D, Xu T, Kumar S (2015) Autophagy as a pro-death pathway. Immunol Cell Biol 93:35–42. doi:10.1038/icb.2014.85

    Article  CAS  PubMed  Google Scholar 

  27. Xu HD, Wu D, Gu JH, Ge JB, Wu JC, Han R, Liang ZQ, Qin ZH (2013) The pro-survival role of autophagy depends on Bcl-2 under nutrition stress conditions. PLoS One 8:e63232. doi:10.1371/journal.pone.0063232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Debnath J (2011) The multifaceted roles of autophagy in tumors-implications for breast cancer. J Mammary Gland Biol Neoplasia 16:173–187. doi:10.1007/s10911-011-9223-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A, Kroemer G (2008) p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 7:3006–3011

    Article  CAS  PubMed  Google Scholar 

  30. Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G (2008) Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7:3056–3061

    Article  CAS  PubMed  Google Scholar 

  31. Bradley G, Irish J, MacMillan C, Mancer K, Witterick I, Hartwick W, Gullane P, Kamel-Reid S, Benchimol S (2001) Abnormalities of the ARF-p53 pathway in oral squamous cell carcinoma. Oncogene 20:654–658. doi:10.1038/sj.onc.1204131

    Article  CAS  PubMed  Google Scholar 

  32. Shwe M, Chiguchi G, Yamada S, Nakajima T, Maung KK, Takagi M, Amagasa T, Tsuchida N (2001) P53 and MDM2 co-expression in tobacco and betel chewing-associated oral squamous cell carcinomas. J Med Dent Sci 48:113–119

    CAS  PubMed  Google Scholar 

  33. Ichwan SJ, Yamada S, Sumrejkanchanakij P, Ibrahim-Auerkari E, Eto K, Ikeda MA (2006) Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene 25:1216–1224. doi:10.1038/sj.onc.1209158

    Article  CAS  PubMed  Google Scholar 

  34. Lin YS, Chen SF, Liu CL, Nieh S (2012) The chemoadjuvant potential of grape seed procyanidins on p53-related cell death in oral cancer cells. J Oral Pathol Med 41:322–331. doi:10.1111/j.1600-0714.2011.01103.x

    Article  CAS  PubMed  Google Scholar 

  35. Benchimol S (2001) p53-dependent pathways of apoptosis. Cell Death Differ 8:1049–1051. doi:10.1038/sj.cdd.4400918

    Article  CAS  PubMed  Google Scholar 

  36. Alenzi FQ (2004) Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci 61:99–102

    Article  CAS  PubMed  Google Scholar 

  37. Saberi E, Kordi-Tamandani DM, Jamali S, Rigi-Ladiz MA (2014) Analysis of methylation and mRNA expression status of FADD and FAS genes in patients with oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 19:e562–e568

    PubMed  PubMed Central  Google Scholar 

  38. Yanase M, Kato K, Yoshizawa K, Noguchi N, Kitahara H, Nakamura H (2014) Prognostic value of vascular endothelial growth factors A and C in oral squamous cell carcinoma. J Oral Pathol Med 43:514–520. doi:10.1111/jop.12167

    Article  CAS  PubMed  Google Scholar 

  39. Henriques AC, de Matos FR, Galvao HC, Freitas Rde A (2012) Immunohistochemical expression of MMP-9 and VEGF in squamous cell carcinoma of the tongue. J Oral Sci 54:105–111

    Article  CAS  PubMed  Google Scholar 

  40. Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, Ramanathan A, Karen-Ng LP, Kallarakkal TG, Mustafa WM, Abraham MT, Tay KK, Zain RB (2012) Genome-wide analysis of oral squamous cell carcinomas revealed over expression of ISG15, Nestin and WNT11. Oral Dis 18:469–476. doi:10.1111/j.1601-0825.2011.01894.x

    Article  CAS  PubMed  Google Scholar 

  41. Andrade Filho PA, Letra A, Cramer A, Prasad JL, Garlet GP, Vieira AR, Ferris RL, Menezes R (2011) Insights from studies with oral cleft genes suggest associations between WNT-pathway genes and risk of oral cancer. J Dent Res 90:740–746. doi:10.1177/0022034511401622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ge L, Liu S, Xie L, Sang L, Ma C, Li H (2015) Differential mRNA expression profiling of oral squamous cell carcinoma by high-throughput RNA sequencing. J Biomed Res 29:397. doi:10.7555/jbr.29.20140088

    PubMed Central  Google Scholar 

  43. Esselens C, Malapeira J, Colome N, Casal C, Rodriguez-Manzaneque JC, Canals F, Arribas J (2010) The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem 285:2463–2473. doi:10.1074/jbc.M109.055129

    Article  CAS  PubMed  Google Scholar 

  44. Miyato H, Tsuno NH, Kitayama J (2012) Semaphorin 3C is involved in the progression of gastric cancer. Cancer Sci 103:1961–1966. doi:10.1111/cas.12003

    Article  CAS  PubMed  Google Scholar 

  45. Cicciu M, Herford AS, Maria VG, Bramanti E (2015) Platelet-derived growth factor type BB and collagen matrix for soft tissue reconstruction after muco-epidermoid carcinoma removal: a possible therapeutic option. J Cancer Res Ther 11:234–237. doi:10.4103/0973-1482.136033

    Article  CAS  PubMed  Google Scholar 

  46. Shih SD, Rees TD, Miller EG, Wright JM, Iacopino AM (1996) The effects of platelet-derived growth factor-BB and insulin-like growth factor-1 on epithelial dysplasia. J Periodontol 67:1224–1232. doi:10.1902/jop.1996.67.11.1224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by internal grant of ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy with the title ‘Identification of metlhylation profile for the genes related with the oral squamous cancer/Indentificarea unui profil de metilare a genolor associate cancerului in carcinomul oral cu celulel squamouase’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cornelia Braicu or Ioana Berindan-Neagoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irimie, A.I., Braicu, C., Pileczki, V. et al. Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem 419, 75–82 (2016). https://doi.org/10.1007/s11010-016-2751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2751-9

Keywords

Navigation