Skip to main content

Advertisement

Log in

Molecular insights into the association of obesity with breast cancer risk: relevance to xenobiotic metabolism and CpG island methylation of tumor suppressor genes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR–RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with “Luminal A” breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p < 0.05), Ras-association (RalGDS/AF-6) domain family member 1 (RASSF1A) (r = 0.31, p < 0.001), and breast cancer type 1 susceptibility protein (r = 0.19, p < 0.05); and inverse association with methylation of BNIP3 (r = −0.48, p < 0.0001). To conclude based on these results, obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Jovanovic J, Rønneberg JA, Tost J et al (2010) The epigenetics of breast cancer. Mol Oncol 4(3):242–254

    Article  CAS  PubMed  Google Scholar 

  2. Apostolou P, Fostira F (2013) Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int 2013:747318

    Article  PubMed Central  PubMed  Google Scholar 

  3. Simpson E, Brown KA (2013) Obesity and breast cancer: role of inflammation and aromatase. J Mol Endocrinol 51(3):T51–T59

    Google Scholar 

  4. Naushad SM, Pavani A, Digumarti RR et al (2011) Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Mol Biol Rep 38(8):4893–4901

    Article  CAS  PubMed  Google Scholar 

  5. Szymczak J, Milewicz A, Thijssen JH et al (1998) Concentration of sex steroids in adipose tissue after menopause. Steroids 63(5–6):319–321

    Article  CAS  PubMed  Google Scholar 

  6. Naushad SM, Reddy CA, Rupasree Y et al (2011) Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys 61(3):715–723

    Article  CAS  PubMed  Google Scholar 

  7. Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M, Demonacos C (2013) Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res 15(6):R107

    Article  PubMed Central  PubMed  Google Scholar 

  8. Perng W, Villamor E, Shroff MR et al (2013) Dietary intake, plasma homocysteine, and repetitive element DNA methylation in the Multi-Ethnic Study of Atherosclerosis (MESA). Nutr Metab Cardiovasc Dis S0939–4753(13):312–318

    Google Scholar 

  9. Fang Q, Yin J, Li F, Zhang J, Watford M (2010) Characterization of methionine adenosyltransferase 2beta gene expression in skeletal muscle and subcutaneous adipose tissue from obese and lean pigs. Mol Biol Rep 37(5):2517–2524

    Article  CAS  PubMed  Google Scholar 

  10. Naushad SM, Reddy CA, Kumaraswami K et al (2014) Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective. Cell Biochem Biophys 68(2):397–406

    Article  CAS  PubMed  Google Scholar 

  11. Naushad SM, Prayaga A, Digumarti RR et al (2012) Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) expression is epigenetically regulated by one-carbon metabolism in invasive duct cell carcinoma of breast. Mol Cell Biochem 361(1–2):189–195

    Article  CAS  PubMed  Google Scholar 

  12. Korah R, Healy JM, Kunstman JW et al (2013) Epigenetic silencing of RASSF1A deregulates cytoskeleton and promotes malignant behavior of adrenocortical carcinoma. Mol Cancer 12:87. doi:10.1186/1476-4598-12-87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ko E, Lee BB, Kim Y et al (2013) Association of RASSF1A and p63 with poor recurrence-free survival in node-negative stage I–II non-small cell lung cancer. Clin Cancer Res 19(5):1204–1212

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14(8):927–939

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Guo K, Searfoss G, Krolikowski D et al (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8(4):367–376

    Article  CAS  PubMed  Google Scholar 

  16. Naushad SM, Pavani A, Rupasree Y et al (2012) Association of aberrations in one-carbon metabolism with molecular phenotype and grade of breast cancer. Mol Carcinog 51(Suppl 1):E32–E41

    Article  CAS  PubMed  Google Scholar 

  17. Govindaiah V, Naushad SM, Prabhakara K, Krishna PC, Radha Rama Devi A (2009) Association of parental hyperhomocysteinemia and C677T methylene tetrahydrofolate reductase (MTHFR) polymorphism with recurrent pregnancy loss. Clin Biochem 42(4–5):380–386

    Article  CAS  PubMed  Google Scholar 

  18. WHO (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 854:1–452

    Google Scholar 

  19. Mohammad NS, Yedluri R, Addepalli P, Gottumukkala SR, Digumarti RR, Kutala VK (2011) Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Mol Cell Biochem 349(1–2):159–167

    Article  CAS  PubMed  Google Scholar 

  20. Taioli E, Bradlow HL, Garbers SV et al (1999) Role of estradiol metabolism and CYP1A1 polymorphisms in breast cancer risk. Cancer Detect Prev 23(3):232–237

    Article  CAS  PubMed  Google Scholar 

  21. Lachman HM, Morrow B, Shprintzen R et al (1996) Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet 67:468–472

    Article  CAS  PubMed  Google Scholar 

  22. Lavigne JA, Goodman JE, Fonong T et al (2001) The effects of catechol-O-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res 61(20):7488–7494

    CAS  PubMed  Google Scholar 

  23. Karbownik-Lewinska M, Szosland J, Kokoszko-Bilska A et al (2012) Direct contribution of obesity to oxidative damage to macromolecules. Neuro Endocrinol Lett 33(4):453–461

    CAS  PubMed  Google Scholar 

  24. Biglia N, Peano E, Sgandurra P et al (2013) Body mass index (BMI) and breast cancer: impact on tumor histopathologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol 29(3):263–267

    Article  PubMed  Google Scholar 

  25. Song Q, Huang R, Li J et al (2013) The diverse distribution of risk factors between breast cancer subtypes of ER, PR and HER2: a 10-year retrospective multi-center study in China. PLoS One 8(8):e72175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Turkoz FP, Solak M, Petekkaya I et al (2013) The prognostic impact of obesity on molecular subtypes of breast cancer in premenopausal women. J BUON 18(2):335–341

    CAS  PubMed  Google Scholar 

  27. Adachi T, Inoue M, Hara H et al (2004) Relationship of plasma extracellular-superoxide dismutase level with insulin resistance in type 2 diabetic patients. J Endocrinol 181(3):413–417

    Article  CAS  PubMed  Google Scholar 

  28. Peters I, Vaske B, Albrecht K et al (2007) Adiposity and age are statistically related to enhanced RASSF1A tumor suppressor gene promoter methylation in normal autopsy kidney tissue. Cancer Epidemiol Biomarkers Prev 16(12):2526–2532

    Article  CAS  PubMed  Google Scholar 

  29. Ghosh S, Lu Y, Katz A, Hu Y, Li R (2007) Tumor suppressor BRCA1 inhibits a breast cancer-associated promoter of the aromatase gene (CYP19) in human adipose stromal cells. Am J Physiol Endocrinol Metab 292(1):E246–E252

    Article  CAS  PubMed  Google Scholar 

  30. Tan EY, Campo L, Han C et al (2007) BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13(2 Pt 1):467–474

    Article  CAS  PubMed  Google Scholar 

  31. Pajares B, Pollán M, Martín M et al (2013) Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis. Breast Cancer Res 15(6):R105

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tao MH, Marian C, Nie J et al (2011) Body mass and DNA promoter methylation in breast tumors in the Western New York Exposures and Breast Cancer Study. Am J Clin Nutr 94(3):831–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Howard CB, Stevens J, Izevbigie EB, Walker A, McDaniel O (2003) Time and dose-dependent modulation of phase 1 and phase 2 gene expression in response to treatment of MCF-7 cells with a natural anti-cancer agent. Cell Mol Biol (Noisy-le-grand) 49(7):1057–1065

    CAS  Google Scholar 

  34. Mahadevan B, Arora V, Schild LJ et al (2006) Reduction in tamoxifen-induced CYP3A2 expression and DNA adducts using antisense technology. Mol Carcinog 45(2):118–125

    Article  CAS  PubMed  Google Scholar 

  35. Naushad SM, Krishnaprasad C, Devi AR (2014) Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians. Mol Biol Rep. doi:10.1007/s11033-014-3163-0

Download references

Acknowledgments

This work was supported by the grant funded by Indian Council of Medical Research (ICMR), New Delhi (Ref No. 5/13/32/2007) and Prof. T. R. Rajagopalan Research Fund of SASTRA University, Thanjavur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Kutala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naushad, S.M., Hussain, T., Al-Attas, O.S. et al. Molecular insights into the association of obesity with breast cancer risk: relevance to xenobiotic metabolism and CpG island methylation of tumor suppressor genes. Mol Cell Biochem 392, 273–280 (2014). https://doi.org/10.1007/s11010-014-2037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2037-z

Keywords

Navigation