Skip to main content

Advertisement

Log in

Impact of Hyperhomocysteinemia on Breast Cancer Initiation and Progression: Epigenetic Perspective

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by epigenetic modulation of RASSF1 and BRCA1 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoffman, R. M. (1984). Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochimica et Biophysica Acta, 738, 49–87.

    CAS  PubMed  Google Scholar 

  2. Halpern, B. C., Clark, B. R., Hardy, D. N., Halpern, R. M., & Smith, R. A. (1974). The effect of replacement of methionine by homocysteine on survival of malignant and normal adult mammalian cells in culture. Proceedings of the National Academy of Sciences of the United States of America, 71, 1133–1136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mecham, J. O., Rowitch, D., Wallace, C. D., Stern, P. H., & Hoffman, R. M. (1983). The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochemical and Biophysical Research Communications, 117, 429–434.

    Article  CAS  PubMed  Google Scholar 

  4. Judde, J. G., Ellis, M., & Frost, P. (1989). Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Research, 49(17), 4859–4865.

    CAS  PubMed  Google Scholar 

  5. Zhang, W., Braun, A., Bauman, Z., Olteanu, H., Madzelan, P., & Banerjee, R. (2005). Expression profiling of homocysteine junction enzymes in the NCI60 panel of human cancer cell lines. Cancer Research, 65(4), 1554–1560.

    Article  CAS  PubMed  Google Scholar 

  6. Carson, D. A., Willis, E. H., & Kamatani, N. (1983). Metabolism to methionine and growth stimulation by 5′-methylthioadenosine and 5′-methylthioinosine in mammalian cells. Biochemical and Biophysical Research Communications, 112, 391–397.

    Article  CAS  PubMed  Google Scholar 

  7. Crott, J., Thomas, P., & Fenech, M. (2001). Normal human lymphocytes exhibit a wide range of methionine-dependency which is related to altered cell division but not micronucleus frequency. Mutagenesis, 16, 317–322.

    Article  CAS  PubMed  Google Scholar 

  8. Hall, C. A., Begley, J. A., & Chu, R. C. (1986). Methionine dependency of cultured human lymphocytes. Proceedings of the Society for Experimental Biology and Medicine, 182, 215–220.

    Article  CAS  PubMed  Google Scholar 

  9. James, S. J., Yin, L., & Swendseid, M. E. (1989). DNA strand break accumulation, thymidylate synthesis and NAD levels in lymphocytes from methyl donor-deficient rats. Journal of Nutrition, 119, 661–664.

    CAS  PubMed  Google Scholar 

  10. Beetstra, S., Suthers, G., Dhillon, V., Salisbury, C., Turner, J., Altree, M., et al. (2008). Methionine-dependence phenotype in the one-carbon metabolic pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 17(10), 2565–2571.

    Article  CAS  Google Scholar 

  11. Naushad, S. M., Pavani, A., Digumarti, R. R., Gottumukkala, S. R., & Kutala, V. K. (2011). Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Molecular Biology Reports, 38(8), 4893–4901.

    Article  CAS  PubMed  Google Scholar 

  12. Gatt, A., Makris, A., Cladd, H., Burcombe, R. J., Smith, J. M., Cooper, P., et al. (2007). Hyperhomocysteinemia in women with advanced breast cancer. International Journal of Laboratory Hematology, 29(6), 421–425.

    Article  CAS  PubMed  Google Scholar 

  13. Ryu, C. S., Kwak, H. C., Lee, K. S., Kang, K. W., Oh, S. J., Lee, K. H., et al. (2011). Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells. Toxicology and Applied Pharmacology, 255(1), 94–102.

    Article  CAS  PubMed  Google Scholar 

  14. Evron, E., Dooley, W. C., Umbricht, C. B., Rosenthal, D., Sacchi, N., Gabrielson, E., et al. (2001). Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet, 357, 1335–1336.

    Article  CAS  PubMed  Google Scholar 

  15. Fackler, M. J., McVeigh, M., Mehrotra, J., Blum, M. A., Lange, J., Lapides, A., et al. (2004). Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Research, 64, 4442–4452.

    Article  CAS  PubMed  Google Scholar 

  16. Fackler, M. J., Malone, K., Zhang, Z., Schilling, E., Garrett-Mayer, E., Swift-Scanlan, T., et al. (2006). Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clinical Cancer Research, 12, 3306–3310.

    Article  CAS  PubMed  Google Scholar 

  17. Müller, H. M., Widschwendter, A., Fiegl, H., Ivarsson, L., Goebel, G., Perkmann, E., et al. (2003). DNA methylation in serum of breast cancer patients: An independent prognostic marker. Cancer Research, 63, 7641–7645.

    PubMed  Google Scholar 

  18. Mangia, A., Tommasi, S., Bruno, M., Malfettone, A., D’Amico, C., Zito, F. A., et al. (2010). Histological features of extratumoral breast lesions as a predictive factor of familial breast cancer. Oncology Reports, 23(6), 1641–1645.

    Article  PubMed  Google Scholar 

  19. Han, S. H., Lee, K. R., Lee, D. G., Kim, B. Y., Lee, K. E., & Chung, W. S. (2006). Mutation analysis of BRCA1 and BRCA2 from 793 Korean patients with sporadic breast cancer. Clinical Genetics, 70(6), 496–501.

    Article  PubMed  Google Scholar 

  20. Mohammad, N. S., Yedluri, R., Addepalli, P., Gottumukkala, S. R., Digumarti, R. R., & Kutala, V. K. (2011). Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Molecular and Cellular Biochemistry, 349(1–2), 159–167.

    Article  CAS  PubMed  Google Scholar 

  21. Tan, E. Y., Campo, L., Han, C., Turley, H., Pezzella, F., Gatter, K., et al. (2007). BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clinical Cancer Research, 13(2 Pt 1), 467–474.

    Article  CAS  PubMed  Google Scholar 

  22. Holstege, H., Horlings, H. M., Velds, A., Langerød, A., Børresen-Dale, A. L., van de Vijver, M. J., et al. (2010). BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer, 10, 654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tischkowitz, M. D., & Foulkes, W. D. (2006). The basal phenotype of BRCA1-related breast cancer: past, present and future. Cell Cycle, 5(9), 963–967.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J. S., Fackler, M. J., Lee, J. H., Choi, C., Park, M. H., Yoon, J. H., et al. (2010). Basal-like breast cancer displays distinct patterns of promoter methylation. Cancer Biology & Therapy, 9(12), 1017–1024.

    Article  CAS  Google Scholar 

  25. Naushad, S. M., Pavani, A., Rupasree, Y., Divyya, S., Deepti, S., Digumarti, R. R., Gottumukkala, S. R., Prayaga, A., Kutala, V. K. (2011). Aberration in one-carbon metabolism influence molecular phenotype and grade of breast cancer. Molecular Carcinogenesis. doi:10.1002/mc.21830.

  26. Joosse, S. A., Brandwijk, K. I., Mulder, L., Wesseling, J., Hannemann, J., & Nederlof, P. M. (2011). Genomic signature of BRCA1 deficiency in sporadic basal-like breast tumors. Genes, Chromosomes and Cancer, 50(2), 71–81.

    Article  CAS  PubMed  Google Scholar 

  27. Wei, M., Xu, J., Dignam, J., Nanda, R., Sveen, L., Fackenthal, J., et al. (2008). Estrogen receptor alpha, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Research and Treatment, 111(1), 113–120.

    Article  CAS  PubMed  Google Scholar 

  28. Pepe, C., Guidugli, L., Sensi, E., Aretini, P., D’Andrea, E., Montagna, M., et al. (2007). Methyl group metabolism gene polymorphisms as modifier of breast cancer risk in Italian BRCA1/2 carriers. Breast Cancer Research and Treatment, 103(1), 29–36.

    Article  CAS  PubMed  Google Scholar 

  29. Burbee, D. G., Forgacs, E., Zöchbauer-Müller, S., Shivakumar, L., Fong, K., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93, 691–699.

    Article  CAS  PubMed  Google Scholar 

  30. Karray-Chouayekh, S., Trifa, F., Khabir, A., Boujelbane, N., Sellami-Boudawara, T., Daoud, J., et al. (2010). Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients. Journal of Cancer Research and Clinical Oncology, 136(2), 203–210.

    Article  CAS  PubMed  Google Scholar 

  31. Pirouzpanah, S., Taleban, F. A., Atri, M., Abadi, A. R., & Mehdipour, P. (2010). The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer. Cancer Causes and Control, 21(12), 2101–2111.

    Article  PubMed  Google Scholar 

  32. Cho, Y. H., Yazici, H., Wu, H. C., Terry, M. B., Gonzalez, K., Qu, M., et al. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30(7), 2489–2496.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Naushad, S. M., Prayaga, A., Digumarti, R. R., Gottumukkala, S. R., Kutala, V. K. (2011). Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) expression is epigenetically regulated by one-carbon metabolism in invasive duct cell carcinoma of breast. Molecular and Cellular Biochemistry, 361(1–2), 189–195.

    Google Scholar 

  34. Xue, W. J., Li, C., Zhou, X. J., Guan, H. G., Qin, L., Li, P., et al. (2008). RASSF1A expression inhibits the growth of hepatocellular carcinoma from Qidong County. Journal of Gastroenterology and Hepatology, 23(9), 1448–1458.

    Article  CAS  PubMed  Google Scholar 

  35. Naushad, S. M., Reddy, C. A., Rupasree, Y., Pavani, A., Digumarti, R. R., Gottumukkala, S. R., Kuppusamy, P., Kutala, V. K. (2011). Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochemistry and Biophysics, 61(3), 715–723.

    Google Scholar 

  36. Mirza, S., Sharma, G., Prasad, C. P., Parshad, R., Srivastava, A., Gupta, S. D., et al. (2007). Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sciences, 81, 280–287.

    Article  CAS  PubMed  Google Scholar 

  37. Moscow, J. A., Gong, M., He, R., Sgagias, M. K., Dixon, K. H., Anzick, S. L., et al. (1995). Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Research, 55(17), 3790–3794.

    CAS  PubMed  Google Scholar 

  38. Kokkinakis, D. M., Liu, X., & Neuner, R. D. (2005). Modulation of cell cycle and gene expression in pancreatic tumor cell lines by methionine deprivation (methionine stress): Implications to the therapy of pancreatic adenocarcinoma. Molecular Cancer Therapeutics, 4(9), 1338–1348.

    Article  CAS  PubMed  Google Scholar 

  39. Worm, J., Kirkin, A. F., Dzhandzhugazyan, K. N., & Guldberg, P. (2001). Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. Journal of Biological Chemistry, 276(43), 39990–40000.

    Article  CAS  PubMed  Google Scholar 

  40. Cho, Y. H., Yazici, H., Wu, H. C., Terry, M. B., Gonzalez, K., Qu, M., et al. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30(7), 2489–2496.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Widschwendter, M., Apostolidou, S., Raum, E., Rothenbacher, D., Fiegl, H., Menon, U., et al. (2008). Epigenotyping in peripheral blood cell DNA and breast cancer risk: A proof of principle study. PLoS ONE, 3(7), e2656.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Radpour, R., Barekati, Z., Kohler, C., Lv, Q., Bürki, N., Diesch, C., et al. (2011). Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS ONE, 6(1), e16080.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant funded by Indian Council of Medical Research (ICMR), New Delhi (Ref No. 5/13/32/2007), and Department of Biotechnology (BT/PR9637/BRB/10/582/2007). VKK and SGK are recipients of Ramanujan Fellowship awarded by Department of Science and Technology, Government of India. SD is recipient of Lady Tata Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Kutala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naushad, S.M., Reddy, C.A., Kumaraswami, K. et al. Impact of Hyperhomocysteinemia on Breast Cancer Initiation and Progression: Epigenetic Perspective. Cell Biochem Biophys 68, 397–406 (2014). https://doi.org/10.1007/s12013-013-9720-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9720-7

Keywords

Navigation