Skip to main content

Advertisement

Log in

Expression of transcripts related to intestinal ion and nutrient absorption in pregnant and lactating rats as determined by custom-designed cDNA microarray

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In pregnancy and lactation, maternal adaptation for the enhancement of intestinal ion and nutrient absorption is of paramount importance for fetal development and lactogenesis. This nutrient hyperabsorption has been reported to result from upregulation of transporter gene expression, in part, under control of lactogenic hormone prolactin (PRL). Since a number of gene families are responsible for ion and nutrient transport in the rat small intestine, we herein developed a custom-designed cDNA microarray (CalGeneArray) to determine the transcriptome responses of duodenal epithelial cells during these reproductive periods, which was subsequently validated by quantitative real-time PCR. We thus designed 277 oligonucleotide probes to detect 113 transcripts related to ion/nutrient transport, bone/calcium metabolism, paracrine regulator, and cell metabolism. Pregnancy was found to upregulate the expressions of several duodenal transporters, e.g., Trpm6, Trpm7, Glut5, and Trpv6. Pregnant rats subjected to 7-day injection of bromocriptine, an inhibitor of PRL release, showed the increased levels of some other transcripts, e.g., insulin-2 and Cyp27b1, compared to untreated pregnant rats. Bromocriptine also increased the mRNA levels of insulin-2, glucose transporter-1 (Sglt1), and Cyp27b1, while decreasing those of Fgfr2c, Atp1b2, and Cldn19 in early lactation. During late lactation, the levels of eight studied transcripts (i.e., NaPi-IIb, Cyp27b1, Cldn18, Casr, Atp1b2, Xpnpep, Pept1, and Trpm7) were altered. In conclusion, the CalGeneArray was powerful to help reveal that pregnancy and lactation modulated the expression of genes related to duodenal nutrient transport and cell metabolism. Our findings supported the physiological significance of PRL in regulating nutrient absorption during pregnancy and lactation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cripps AW, Williams VJ (1975) The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr 33:17–32

    Article  CAS  PubMed  Google Scholar 

  2. Mainoya JR (1975) Influence of reproductive state on intestinal fluid and ion transport by the rat jejunum, in relation to the possible contribution of prolactin. J Endocrinol 67:351–358

    Article  CAS  PubMed  Google Scholar 

  3. Larralde J, Fernandez-Otero P, Gonzalez M (1966) Increased active transport of glucose through the intestine during pregnancy. Nature 209:1356–1357

    Article  CAS  PubMed  Google Scholar 

  4. Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N (2009) Two-step stimulation of intestinal Ca2+ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol Endocrinol Metab 297:E609–E619

    Article  CAS  PubMed  Google Scholar 

  5. Fell BF, Smith KA, Campbell RM (1963) Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J Pathol Bacteriol 85:179–188

    Article  CAS  PubMed  Google Scholar 

  6. Soares MJ, Konno T, Alam SM (2007) The prolactin family: effectors of pregnancy-dependent adaptations. Trends Endocrinol Metab 18:114–121

    Article  CAS  PubMed  Google Scholar 

  7. Charoenphandhu N, Wongdee K, Krishnamra N (2010) Is prolactin the cardinal calciotropic maternal hormone? Trends Endocrinol Metab 21:395–401

    Article  CAS  PubMed  Google Scholar 

  8. Charoenphandhu N, Krishnamra N (2007) Prolactin is an important regulator of intestinal calcium transport. Can J Physiol Pharmacol 85:569–581

    Article  CAS  PubMed  Google Scholar 

  9. Teerapornpuntakit J, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2012) Proliferation and mRNA expression of absorptive villous cell markers and mineral transporters in prolactin-exposed IEC-6 intestinal crypt cells. Cell Biochem Funct 30:320–327

    Article  CAS  PubMed  Google Scholar 

  10. Ramsey DH, Bern HA (1972) Stimulation by ovine prolactin of fluid transfer in everted sacs of rat small intestine. J Endocrinol 53:453–459

    Article  CAS  PubMed  Google Scholar 

  11. Mainoya JR (1975) Effect of prolactin on sugar and amino acid transport by the rat jejunum. J Exp Zool 192:149–154

    Article  CAS  PubMed  Google Scholar 

  12. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ (2008) Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 13:13–28

    Article  PubMed  Google Scholar 

  13. Wongdee K, Charoenphandhu N (2013) Regulation of epithelial calcium transport by prolactin: from fish to mammals. Gen Comp Endocrinol 181:235–240

    Article  CAS  PubMed  Google Scholar 

  14. Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM (2006) Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6:581–588

    Article  CAS  PubMed  Google Scholar 

  15. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584. doi:10.1101/cshperspect.a002584

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kraus P, Xing X, Lim SL, Fun ME, Sivakamasundari V, Yap SP, Lee H, Karuturi RK, Lufkin T (2012) Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos. BMC Res Notes 5:232. doi:10.1186/1756-0500-5-232

    Article  PubMed Central  PubMed  Google Scholar 

  17. Charoenphandhu N, Wongdee K, Teerapornpuntakit J, Thongchote K, Krishnamra N (2008) Transcriptome responses of duodenal epithelial cells to prolactin in pituitary-grafted rats. Mol Cell Endocrinol 296:41–52

    Article  CAS  PubMed  Google Scholar 

  18. Teerapornpuntakit J, Dorkkam N, Wongdee K, Krishnamra N, Charoenphandhu N (2009) Endurance swimming stimulates transepithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats. Am J Physiol Endocrinol Metab 296:E775–E786

    Article  CAS  PubMed  Google Scholar 

  19. Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2007) Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 293:E372–E384

    Article  CAS  PubMed  Google Scholar 

  20. Leelatanawit R, Uawisetwathana U, Klinbunga S, Karoonuthaisiri N (2011) A cDNA microarray, UniShrimpChip, for identification of genes relevant to testicular development in the black tiger shrimp (Penaeus monodon). BMC Mol Biol 12:15. doi:10.1186/1471-2199-12-15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Karoonuthaisiri N, Sittikankeaw K, Preechaphol R, Kalachikov S, Wongsurawat T, Uawisetwathana U, Russo JJ, Ju J, Klinbunga S, Kirtikara K (2009) ReproArray (GTS): a cDNA microarray for identification of reproduction-related genes in the giant tiger shrimp Penaeus monodon and characterization of a novel nuclear autoantigenic sperm protein (NASP) gene. Comp Biochem Physiol D 4:90–99

    Google Scholar 

  22. Uawisetwathana U, Leelatanawit R, Klanchui A, Prommoon J, Klinbunga S, Karoonuthaisiri N (2011) Insights into eyestalk ablation mechanism to induce ovarian maturation in the black tiger shrimp. PLoS ONE 6:e24427. doi:10.1371/journal.pone.0024427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034. doi:10.1186/gb-2002-3-7-research0034

    Article  PubMed Central  PubMed  Google Scholar 

  24. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  25. Rungrassamee W, Tosukhowong A, Klanchui A, Maibunkaew S, Plengvidhya V, Karoonuthaisiri N (2012) Development of bacteria identification array to detect lactobacilli in Thai fermented sausage. J Microbiol Methods 91:341–353

    Article  CAS  PubMed  Google Scholar 

  26. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2_{{}}^{{ - \Delta \Delta C_{{\text{t}}}^{{}} }} \) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  28. Buehlmeyer K, Doering F, Daniel H, Schulz T, Michna H (2007) Exercise associated genes in rat colon mucosa: upregulation of ornithin decarboxylase-1. Int J Sports Med 28:361–367

    Article  CAS  PubMed  Google Scholar 

  29. Yamada H, Chen D, Monstein HJ, Hakanson R (1997) Effects of fasting on the expression of gastrin, cholecystokinin, and somatostatin genes and of various housekeeping genes in the pancreas and upper digestive tract of rats. Biochem Biophys Res Commun 231:835–838

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Matter EK, Hoppert HT, Grayson BE, Seeley RJ, Sandoval DA (2013) Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity. Int J Obes (Lond). doi:10.1038/ijo.2013.86

    Google Scholar 

  31. Martinez-Beamonte R, Navarro MA, Larraga A, Strunk M, Barranquero C, Acin S, Guzman MA, Inigo P, Osada J (2011) Selection of reference genes for gene expression studies in rats. J Biotechnol 151:325–334

    Article  CAS  PubMed  Google Scholar 

  32. Hammond KA (1997) Adaptation of the maternal intestine during lactation. J Mammary Gland Biol Neoplasia 2:243–252

    Article  CAS  PubMed  Google Scholar 

  33. Musacchia XJ, Hartner AM (1970) Intestinal absorption of glucose, and blood glucose and hematocrit in pregnant and nonpregnant hamsters. Proc Soc Exp Biol Med 135:307–310

    Article  CAS  PubMed  Google Scholar 

  34. Davies NT, Williams RB (1977) The effect of pregnancy and lactation on the absorption of zinc and lysine by the rat duodenum in situ. Br J Nutr 38:417–423

    Article  CAS  PubMed  Google Scholar 

  35. Barrett JF, Whittaker PG, Williams JG, Lind T (1994) Absorption of non-haem iron from food during normal pregnancy. Br Med J 309:79–82

    Article  CAS  Google Scholar 

  36. Fung EB, Ritchie LD, Woodhouse LR, Roehl R, King JC (1997) Zinc absorption in women during pregnancy and lactation: a longitudinal study. Am J Clin Nutr 66:80–88

    CAS  PubMed  Google Scholar 

  37. Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  38. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Contreras RG, Avila G, Gutierrez C, Bolívar JJ, González-Mariscal L, Darzon A, Beaty G, Rodriguez-Boulan E, Cereijido M (1989) Repolarization of Na+-K+ pumps during establishment of epithelial monolayers. Am J Physiol 257:C896–C905

    CAS  PubMed  Google Scholar 

  40. Tanrattana C, Charoenphandhu N, Limlomwongse L, Krishnamra N (2004) Prolactin directly stimulated the solvent drag-induced calcium transport in the duodenum of female rats. Biochim Biophys Acta 1665:81–91

    Article  CAS  PubMed  Google Scholar 

  41. Koeppen BM, Stanton BA (2008) Homeostasis of body fluids. In: Koeppen BM, Stanton BA (eds) Berne & Levy physiology, 6th edn. Mosby-Elsevier, Philadelphia, pp 20–33

    Google Scholar 

  42. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100:123–136

    Article  CAS  PubMed  Google Scholar 

  43. Larsen EH, Nedergaard S, Ussing HH (2000) Role of lateral intercellular space and sodium recirculation for isotonic transport in leaky epithelia. Rev Physiol Biochem Pharmacol 141:153–212

    Article  CAS  PubMed  Google Scholar 

  44. Burdett K, Reek C (1979) Adaptation of the small intestine during pregnancy and lactation in the rat. Biochem J 184:245–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wikvall K (2001) Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form. Int J Mol Med 7:201–209

    CAS  PubMed  Google Scholar 

  46. Marks J, Debnam ES, Unwin RJ (2010) Phosphate homeostasis and the renal–gastrointestinal axis. Am J Physiol Renal Physiol 299:F285–F296

    Article  CAS  PubMed  Google Scholar 

  47. Balesaria S, Sangha S, Walters JR (2009) Human duodenum responses to vitamin D metabolites of TRPV6 and other genes involved in calcium absorption. Am J Physiol Gastrointest Liver Physiol 297:G1193–G1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Spanos E, Colston KW, Evans IM, Galante LS, Macauley SJ, Macintyre I (1976) Effect of prolactin on vitamin D metabolism. Mol Cell Endocrinol 5:163–167

    Article  CAS  PubMed  Google Scholar 

  49. Ajibade DV, Dhawan P, Fechner AJ, Meyer MB, Pike JW, Christakos S (2010) Evidence for a role of prolactin in calcium homeostasis: regulation of intestinal transient receptor potential vanilloid type 6, intestinal calcium absorption, and the 25-hydroxyvitamin D 3 1α hydroxylase gene by prolactin. Endocrinology 151:2974–2984

    Article  PubMed Central  PubMed  Google Scholar 

  50. Paravicini TM, Chubanov V, Gudermann T (2012) TRPM7: a unique channel involved in magnesium homeostasis. Int J Biochem Cell Biol 44:1381–1384

    Article  CAS  PubMed  Google Scholar 

  51. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Shoshani L, Contreras RG, Roldán ML, Moreno J, Lázaro A, Balda MS, Matter K, Cereijido M (2005) The polarized expression of Na+, K+-ATPase in epithelia depends on the association between β-subunits located in neighboring cells. Mol Biol Cell 16:1071–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Cancilla B, Ford-Perriss MD, Bertram JF (1999) Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney. Kidney Int 56:2025–2039

    Article  CAS  PubMed  Google Scholar 

  55. Poole TJ, Finkelstein EB, Cox CM (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220:1–17

    Article  CAS  PubMed  Google Scholar 

  56. Cui Y, Li Q (2008) Effect of mammogenic hormones on the expression of FGF7, FGF10 and their receptor in mouse mammary gland. Sci China C Life Sci 51:711–717

    Article  CAS  PubMed  Google Scholar 

  57. Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, Furuse M, Tsukita S (2005) Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol 169:527–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Jüppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nürnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Angelow S, El-Husseini R, Kanzawa SA, Yu AS (2007) Renal localization and function of the tight junction protein, claudin-19. Am J Physiol Renal Physiol 293:F166–F177

    Article  CAS  PubMed  Google Scholar 

  60. Charoenphandhu N, Wongdee K, Tudpor K, Pandaranandaka J, Krishnamra N (2007) Chronic metabolic acidosis upregulated claudin mRNA expression in the duodenal enterocytes of female rats. Life Sci 80:1729–1737

    Article  CAS  PubMed  Google Scholar 

  61. Naeem M, Hussain S, Akhtar N (2011) Mutation in the tight-junction gene claudin 19 (CLDN19) and familial hypomagnesemia, hypercalciuria, nephrocalcinosis (FHHNC) and severe ocular disease. Am J Nephrol 34:241–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Rungnapa Leelatanawit and Ms. Umaporn Uawisetwathana for their technical help and advice. This work was supported by grants from the Discovery-based Development Grant, National Science and Technology Development Agency (P-10-11281 to N. Charoenphandhu), the Faculty of Science, Mahidol University (to N. Charoenphandhu), the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0042/2551 to J. Teerapornpuntakit), and the Thailand Research Fund, the Office of the Higher Education Commission, and the Faculty of Allied Health Sciences, Burapha University (MRG5480230 to K. Wongdee).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narattaphol Charoenphandhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 215 kb)

Supplementary material 2 (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teerapornpuntakit, J., Klanchui, A., Karoonuthaisiri, N. et al. Expression of transcripts related to intestinal ion and nutrient absorption in pregnant and lactating rats as determined by custom-designed cDNA microarray. Mol Cell Biochem 391, 103–116 (2014). https://doi.org/10.1007/s11010-014-1992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1992-8

Keywords

Navigation