Skip to main content

Advertisement

Log in

Prolactin Regulation of Mammary Gland Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

Blg:

β-lactoglobulin

BrdU:

5-bromo-2’-deoxyuridine

CALLA:

membrane metallo-endopeptidase

Cdc6:

cell division cycle 6 homolog (S. cerevisiae)

Cis:

cytokine-inducible SH2-containing protein

dpc:

days post-coitus

dpp:

day post-partum

Er:

estrogen receptor

Elf5:

E74-like factor 5

Egf:

epidermal growth factor

Egfr:

epidermal growth factor receptor

Erbb4/Her4:

v-erb-b2 erythroblastic leukemia viral oncogene homolog 4/Hairy-related 4

FACS:

fluorescence activated cell sorting

Fak:

focal adhesion kinase

Gal:

galanin

Gata3:

GATA binding protein 3

GH:

growth hormone

GnRH:

gonadotropin-releasing hormone

Igf2:

insulin growth factor 2

Jak2:

Janus kinase 2

LH:

leutinising hormone

Mcmd:

mini chromosome maintenance deficient homolog (S. cerevisiae)

MEC:

mammary epithelial cell

MMTV:

mouse mammary tumor virus

MUC1:

mucin 1

PgR:

progesterone receptor

Prl:

prolactin

Prlr:

prolactin receptor

Rank:

receptor activator of NF-κB

RankL:

receptor activator of NF-κB-ligand

Socs:

suppressor of cytokine signaling

Srebf/Srebp1:

sterol regulatory element-binding protein 1

Stat5:

signal transducer and activator of transcription 5

TDLU:

terminal ductal lobular units

Tgfβ:

transforming growth factor beta

Wap:

whey acidic protein

References

  1. Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 1999;4(1):105–22.

    PubMed  CAS  Google Scholar 

  2. Jones RE, Lopez KH. Human reproductive biology. 3rd ed. New York: Academic; 2006.

    Google Scholar 

  3. Binart N, Helloco C, Ormandy CJ, Barra J, Clement-Lacroix P, Baran N, et al. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology 2000;141(7):2691–7.

    PubMed  CAS  Google Scholar 

  4. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 1999;210(1):96–106.

    PubMed  CAS  Google Scholar 

  5. Williams JM, Daniel CW. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 1983;97(2):274–90.

    PubMed  CAS  Google Scholar 

  6. Freeman ME, Smith MS, Nazian SJ, Neill JD. Ovarian and hypothalamic control of the daily surges of prolactin secretion during pseudopregnancy in the rat. Endocrinology 1974;94(3):875–82.

    PubMed  CAS  Google Scholar 

  7. Terkel J, Sawyer CH. Male copulatory behavior triggers nightly prolactin surges resulting in successful pregnancy in rats. Horm Behav 1978;11(3):304–9.

    PubMed  CAS  Google Scholar 

  8. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7(1):49–66.

    PubMed  Google Scholar 

  9. Smalley M, Ashworth A. Stem cells and breast cancer: A field in transit. Nat Rev Cancer 2003;3(11):832–44.

    PubMed  CAS  Google Scholar 

  10. DeOme KB, Faulkin LJ Jr., Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959;19(5):515–20.

    PubMed  CAS  Google Scholar 

  11. Young LJ, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol 1971;6(1):49–56.

    PubMed  CAS  Google Scholar 

  12. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998;125(10):1921–30.

    PubMed  CAS  Google Scholar 

  13. Smith GH, Boulanger CA. Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Prolif 2003;36(Suppl 1):3–15.

    PubMed  CAS  Google Scholar 

  14. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smythe GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006;439:84–8.

    PubMed  CAS  Google Scholar 

  15. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  16. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007;9(2):201–9.

    PubMed  CAS  Google Scholar 

  17. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001;67(2):93–109.

    PubMed  CAS  Google Scholar 

  18. Clarke RB. Isolation and characterization of human mammary stem cells. Cell Prolif 2005;38(6):375–86.

    PubMed  CAS  Google Scholar 

  19. Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M, et al. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 2007;67(17):8131–8.

    PubMed  CAS  Google Scholar 

  20. Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol 2007;303(1):29–44.

    PubMed  CAS  Google Scholar 

  21. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 2007;176(1):19–26.

    PubMed  CAS  Google Scholar 

  22. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004;24(18):8037–47.

    PubMed  CAS  Google Scholar 

  23. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J 1997;16(23):6926–35.

    PubMed  CAS  Google Scholar 

  24. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997;11(2):179–86.

    PubMed  CAS  Google Scholar 

  25. Ormandy CJ, Binart N, Kelly PA. Mammary gland development in prolactin receptor knockout mice. J Mammary Gland Biol Neoplasia 1997;2(4):355–64.

    PubMed  CAS  Google Scholar 

  26. Wagner KU, Krempler A, Triplett AA, Qi Y, George NM, Zhu J, et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 2004;24(12):5510–20.

    PubMed  CAS  Google Scholar 

  27. Stricker P, Grueter R. Action du lobe anterieur de l'hypophyse sur la montee laiteuse. C R Soc Biol 1928;99:1978–80.

    Google Scholar 

  28. Shome B, Parlow AF. Human pituitary prolactin (hPRL): the entire linear amino acid sequence. J Clin Endocrinol Metab 1977;45(5):1112–5.

    PubMed  CAS  Google Scholar 

  29. Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocrine Rev 1996;17(6):639–69.

    CAS  Google Scholar 

  30. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80(4):1523–631.

    PubMed  CAS  Google Scholar 

  31. Terkel J, Blake CA, Sawyer CH. Serum prolactin levels in lactating rats after suckling or exposure to ether. Endocrinology 1972;91(1):49–53.

    Article  PubMed  CAS  Google Scholar 

  32. Berwaer M, Martial JA, Davis JR. Characterization of an up-stream promoter directing extrapituitary expression of the human prolactin gene. Mol Endocrinol 1994;8(5):635–42.

    PubMed  CAS  Google Scholar 

  33. Kaplan LM, Gabriel SM, Koenig JI, Sunday ME, Spindel ER, Martin JB, et al. Galanin is an estrogen-inducible, secretory product of the rat anterior pituitary. Proc Natl Acad Sci U S A 1988;85(19):7408–12.

    PubMed  CAS  Google Scholar 

  34. Wynick D, Small CJ, Bacon A, Holmes FE, Norman M, Ormandy CJ, et al. Galanin regulates prolactin release and lactotroph proliferation. Proc Natl Acad Sci U S A 1998;95(21):12671–6.

    PubMed  CAS  Google Scholar 

  35. Naylor MJ, Ginsburg E, Iismaa TP, Vonderhaar BK, Wynick D, Ormandy CJ. The neuropeptide galanin augments lobuloalveolar development. J Biol Chem 2003;278(31):29145–52.

    PubMed  CAS  Google Scholar 

  36. Sinha YN. Structural variants of prolactin: occurrence and physiological significance. Endocrine Rev 1995;16(3):354–69.

    CAS  Google Scholar 

  37. Ho TW, Leong FS, Olaso CH, Walker AM. Secretion of specific nonphosphorylated and phosphorylated rat prolactin isoforms at different stages of the estrous cycle. Neuroendocrinol 1993;58(2):160–5.

    CAS  Google Scholar 

  38. Oetting WS, Tuazon PT, Traugh JA, Walker AM. Phosphorylation of prolactin. J Biol Chem 1986;261(4):1649–52.

    PubMed  CAS  Google Scholar 

  39. Bernichtein S, Kinet S, Jeay S, Llovera M, Madern D, Martial JA, et al. S179D-human PRL, a pseudophosphorylated human PRL analog, is an agonist and not an antagonist. Endocrinology 2001;142(9):3950–63.

    PubMed  CAS  Google Scholar 

  40. Kuo CB, Wu W, Xu X, Yang L, Chen C, Coss D, et al. Pseudophosphorylated prolactin (S179D PRL) inhibits growth and promotes beta-casein gene expression in the rat mammary gland. Cell Tissue Res 2002;309(3):429–37.

    PubMed  CAS  Google Scholar 

  41. Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TW, et al. Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol 2005;19(7):1868–83.

    PubMed  CAS  Google Scholar 

  42. Boutin JM, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, et al. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 1988;53(1):69–77.

    PubMed  CAS  Google Scholar 

  43. Kelly PA, Djiane J, Banville D, Ali S, Edery M, Rozakis M. The growth hormone/prolactin receptor gene family. Oxf Surv Eukaryot Genes 1991;7:29–50.

    PubMed  CAS  Google Scholar 

  44. Goffin V, Kelly PA. Prolactin and growth hormone receptors. Clin Endocrinol 1996;45(3):247–55.

    CAS  Google Scholar 

  45. Goffin V, Kelly PA. The prolactin/growth hormone receptor family: structure/function relationships. J Mammary Gland Biol Neoplasia 1997;2(1):7–17.

    PubMed  CAS  Google Scholar 

  46. Buck K, Vanek M, Groner B, Ball RK. Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line HC11. Endocrinology 1992;130(3):1108–14.

    PubMed  CAS  Google Scholar 

  47. Clarke LA, Wathes DC, Jabbour HN. Expression and localization of prolactin receptor messenger ribonucleic acid in red deer ovary during the estrous cycle and pregnancy. Biol Reprod 1997;57(4):865–72.

    PubMed  CAS  Google Scholar 

  48. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998;19(3):225–68.

    PubMed  CAS  Google Scholar 

  49. Gouilleux F, Wakao H, Mundt M, Groner B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 1994;13(18):4361–9.

    PubMed  CAS  Google Scholar 

  50. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci U S A 1995;92(19):8831–5.

    PubMed  CAS  Google Scholar 

  51. Das R, Vonderhaar BK. Activation of raf-1, MEK and MAP kinase in prolactin responsive mammary cells. Breast Cancer Res Treat 1996;40(2):141–9.

    PubMed  CAS  Google Scholar 

  52. Das R, Vonderhaar BK. Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 1996;13(6):1139–45.

    PubMed  CAS  Google Scholar 

  53. Erwin RA, Kirken RA, Malabarba MG, Farrar WL, Rui H. Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology 1995;136(8):3512–8.

    PubMed  CAS  Google Scholar 

  54. Piccoletti R, Bendinelli P, Maroni P. Signal transduction pathway of prolactin in rat liver. Mol Cell Endocrinol 1997;135(2):169–77.

    PubMed  CAS  Google Scholar 

  55. Fresno Vara JA, Caceres MA, Silva A, Martin-Perez J. Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 2001;12(7):2171–83.

    PubMed  CAS  Google Scholar 

  56. Tessier C, Prigent-Tessier A, Ferguson-Gottschall S, Gu Y, Gibori G. PRL antiapoptotic effect in the rat decidua involves the PI3K/protein kinase B-mediated inhibition of caspase-3 activity. Endocrinology 2001;142(9):4086–94.

    PubMed  CAS  Google Scholar 

  57. Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM. Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 1995;270(22):13246–53.

    PubMed  CAS  Google Scholar 

  58. Clevenger CV, Thickman K, Ngo W, Chang WP, Takayama S, Reed JC. Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2. Mol Endocrinol 1997;11(5):608–18.

    PubMed  CAS  Google Scholar 

  59. Bachelot A, Binart N. Reproductive role of prolactin. Reproduction 2007;133(2):361–9.

    PubMed  CAS  Google Scholar 

  60. Chilton BS, Hewetson A. Prolactin and growth hormone signaling. Curr Top Dev Biol 2005;68:1–23.

    PubMed  CAS  Google Scholar 

  61. Cunningham BC, Mulkerrin MG, Wells JA. Dimerization of human growth hormone by zinc. Science 1991;253(5019):545–8.

    PubMed  CAS  Google Scholar 

  62. Gertler A, Grosclaude J, Strasburger CJ, Nir S, Djiane J. Real-time kinetic measurements of the interactions between lactogenic hormones and prolactin-receptor extracellular domains from several species support the model of hormone-induced transient receptor dimerization. J Biol Chem 1996;271(40):24482–91.

    PubMed  CAS  Google Scholar 

  63. Somers W, Ultsch M, De Vos AM, Kossiakoff AA. The X-ray structure of a growth hormone-prolactin receptor complex. Nature 1994;372(6505):478–81.

    PubMed  CAS  Google Scholar 

  64. Gadd SL, Clevenger CV. Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol Endocrinol 2006;20(11):2734–46.

    PubMed  CAS  Google Scholar 

  65. Goupille O, Daniel N, Bignon C, Jolivet G, Djiane J. Prolactin signal transduction to milk protein genes: carboxy-terminal part of the prolactin receptor and its tyrosine phosphorylation are not obligatory for JAK2 and STAT5 activation. Mol Cell Endocrinol 1997;127(2):155–69.

    PubMed  CAS  Google Scholar 

  66. Lebrun JJ, Ali S, Sofer L, Ullrich A, Kelly PA. Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem 1994;269(19):14021–6.

    PubMed  CAS  Google Scholar 

  67. Han Y, Watling D, Rogers NC, Stark GR. JAK2 and STAT5, but not JAK1 and STAT1, are required for prolactin-induced beta-lactoglobulin transcription. Mol Endocrinol 1997;11(8):1180–8.

    PubMed  CAS  Google Scholar 

  68. Pezet A, Buteau H, Kelly PA, Edery M. The last proline of Box 1 is essential for association with JAK2 and functional activation of the prolactin receptor. Mol Cell Endocrinol 1997;129(2):199–208.

    PubMed  CAS  Google Scholar 

  69. Lebrun JJ, Ali S, Ullrich A, Kelly PA. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J Biol Chem 1995;270(18):10664–70.

    PubMed  CAS  Google Scholar 

  70. DaSilva L, Rui H, Erwin RA, Howard OM, Kirken RA, Malabarba MG, et al. Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol 1996;117(2):131–40.

    PubMed  CAS  Google Scholar 

  71. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 1995;14(4):854–5.

    PubMed  CAS  Google Scholar 

  72. Wartmann M, Cella N, Hofer P, Groner B, Liu X, Hennighausen L, et al. Lactogenic hormone activation of Stat5 and transcription of the beta-casein gene in mammary epithelial cells is independent of p42 ERK2 mitogen-activated protein kinase activity. J Biol Chem 1996;271(50):31863–8.

    PubMed  CAS  Google Scholar 

  73. Berlanga JJ, Garcia-Ruiz JP, Perrot-Applanat M, Kelly PA, Edery M. The short form of the prolactin (PRL) receptor silences PRL induction of the beta-casein gene promoter. Mol Endocrinol 1997;11(10):1449–57.

    PubMed  CAS  Google Scholar 

  74. Perrot-Applanat M, Gualillo O, Pezet A, Vincent V, Edery M, Kelly PA. Dominant negative and cooperative effects of mutant forms of prolactin receptor. Mol Endocrinol 1997;11(8):1020–32.

    PubMed  CAS  Google Scholar 

  75. Goupille O, Barnier JV, Guibert B, Paly J, Djiane J. Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 2000;159(1–2):133–46.

    PubMed  CAS  Google Scholar 

  76. Hennighausen L, Robinson G. Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005;6:715–25.

    PubMed  CAS  Google Scholar 

  77. Nilsson J, Bjursell G, Kannius-Janson M. Nuclear Jak2 and transcription factor NF1-C2: a novel mechanism of prolactin signaling in mammary epithelial cells. Mol Cell Biol 2006;26(15):5663–74.

    PubMed  CAS  Google Scholar 

  78. Kannius-Janson M, Johansson EM, Bjursell G, Nilsson J. Nuclear factor 1-C2 contributes to the tissue-specific activation of a milk protein gene in the differentiating mammary gland. J Biol Chem 2002;277(20):17589–96.

    PubMed  CAS  Google Scholar 

  79. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997;11:167–78.

    PubMed  CAS  Google Scholar 

  80. Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 2001;128(4):513–25.

    PubMed  CAS  Google Scholar 

  81. Hens JR, Wysolmerski JJ. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 2005;7(5):220–4.

    PubMed  CAS  Google Scholar 

  82. Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE. Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development 1998;125(7):1285–94.

    PubMed  CAS  Google Scholar 

  83. Daniel CW, Silberstein GB, Strickland P. Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 1987;47(22):6052–7.

    PubMed  CAS  Google Scholar 

  84. Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 1994;134(1):84–90.

    PubMed  CAS  Google Scholar 

  85. Walden PD, Ruan W, Feldman M, Kleinberg DL. Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 1998;139(2):659–62.

    PubMed  CAS  Google Scholar 

  86. Coleman S, Daniel CW. Inhibition of mouse mammary ductal morphogenesis and down-regulation of the EGF receptor by epidermal growth factor. Dev Biol 1990;137(2):425–33.

    PubMed  CAS  Google Scholar 

  87. Daniel CW, Robinson S, Silberstein GB. The role of TGF-beta in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1996;1(4):331–41.

    PubMed  CAS  Google Scholar 

  88. Pierce DF Jr., Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 1993;7(12A):2308–17.

    PubMed  CAS  Google Scholar 

  89. Silberstein GB, Strickland P, Coleman S, Daniel CW. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol 1990;110(6):2209–19.

    PubMed  CAS  Google Scholar 

  90. Ruan W, Newman CB, Kleinberg DL. Intact and amino-terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc Natl Acad Sci U S A 1992;89(22):10872–6.

    PubMed  CAS  Google Scholar 

  91. Cunha GR, Young P, Hom YK, Cooke PS, Taylor JA, Lubahn DB. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia 1997;2(4):393–402.

    PubMed  CAS  Google Scholar 

  92. Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 1999;126(2):335–44.

    PubMed  CAS  Google Scholar 

  93. Feng Y, Manka D, Wagner KU, Khan SA. Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci U S A 2007;104(37):14718–23.

    PubMed  CAS  Google Scholar 

  94. Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005;7(6):245–51.

    PubMed  CAS  Google Scholar 

  95. Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND. Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 2000;19(8):1077–84.

    PubMed  CAS  Google Scholar 

  96. Naylor MJ, Lockefeer JA, Horseman ND, Ormandy CJ. Prolactin regulates mammary epithelial cell proliferation via autocrine/paracrine mechanism. Endocrine 2003;20(1–2):111–4.

    PubMed  CAS  Google Scholar 

  97. Galosy SS, Talamantes F. Luteotropic actions of placental lactogens at midpregnancy in the mouse. Endocrinology 1995;136(9):3993–4003.

    PubMed  CAS  Google Scholar 

  98. Clement-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 1999; 140(1):96–105.

    PubMed  CAS  Google Scholar 

  99. Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998;95(9):5076–81.

    PubMed  CAS  Google Scholar 

  100. Humphreys RC, Lydon JP, O'Malley BW, Rosen JM. Use of PRKO mice to study the role of progesterone in mammary gland development. J Mammary Gland Biol Neoplasia 1997;2(4):343–54.

    PubMed  CAS  Google Scholar 

  101. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr., et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995;9(18):2266–78.

    PubMed  CAS  Google Scholar 

  102. Naylor MJ, Ormandy CJ. Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn 2002;225(1):100–5.

    PubMed  CAS  Google Scholar 

  103. Ormandy CJ, Naylor M, Harris J, Robertson F, Horseman ND, Lindeman GJ, et al. Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog Horm Res 2003;58:297–323.

    PubMed  CAS  Google Scholar 

  104. Forsyth IA. Variation among species in the endocrine control of mammary growth and function: the roles of prolactin, growth hormone, and placental lactogen. J Dairy Sci 1986;69(3):886–903.

    Article  PubMed  CAS  Google Scholar 

  105. Forsyth IA. The biology of the placental prolactin/growth hormone gene family. Oxf Rev Reprod Biol 1991;13:97–148.

    PubMed  CAS  Google Scholar 

  106. Shillingford JM, Miyoshi K, Robinson GW, Grimm SL, Rosen JM, Neubauer H, et al. Jak2 is an essential tyrosine kinase involved in pregnancy-mediated development of mammary secretory epithelium. Mol Endocrinol 2002;16(3):563–70.

    PubMed  CAS  Google Scholar 

  107. Schmitt-Ney M, Doppler W, Ball RK, Groner B. Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol Cell Biol 1991;11(7):3745–55.

    PubMed  CAS  Google Scholar 

  108. Schmitt-Ney M, Happ B, Ball RK, Groner B. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc Natl Acad Sci U S A 1992;89(7):3130–4.

    PubMed  CAS  Google Scholar 

  109. Pittius CW, Sankaran L, Topper YJ, Hennighausen L. Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol 1988;2(11):1027–32.

    Article  PubMed  CAS  Google Scholar 

  110. Binart N, Imbert-Bollore P, Baran N, Viglietta C, Kelly PA. A short form of the prolactin (PRL) receptor is able to rescue mammopoiesis in heterozygous PRL receptor mice. Mol Endocrinol 2003;17(6):1066–74.

    PubMed  CAS  Google Scholar 

  111. Faraldo MM, Deugnier MA, Tlouzeau S, Thiery JP, Glukhova MA. Perturbation of beta1-integrin function in involuting mammary gland results in premature dedifferentiation of secretory epithelial cells. Mol Biol Cell 2002;13(10):3521–31.

    PubMed  CAS  Google Scholar 

  112. Streuli CH, Edwards GM, Delcommenne M, Whitelaw CB, Burdon TG, Schindler C, et al. Stat5 as a target for regulation by extracellular matrix. J Biol Chem 1995;270(37):21639–44.

    PubMed  CAS  Google Scholar 

  113. Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. Embo J 2005;24(11):1942–53.

    PubMed  CAS  Google Scholar 

  114. Naylor MJ, Li N, Cheung J, Lowe ET, Lambert E, Marlow R, et al. Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol 2005;171(4):717–28.

    PubMed  CAS  Google Scholar 

  115. Akhtar N, Streuli CH. Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J Cell Biol 2006;173(5):781–93.

    PubMed  CAS  Google Scholar 

  116. Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 2003;130(21):5257–68.

    PubMed  CAS  Google Scholar 

  117. Clark DE, Williams CC, Duplessis TT, Moring KL, Notwick AR, Long W, et al. ERBB4/HER4 potentiates STAT5A transcriptional activity by regulating novel STAT5A serine phosphorylation events. J Biol Chem 2005;280(25):24175–80.

    PubMed  CAS  Google Scholar 

  118. Jones FE, Welte T, Fu X-Y, Stern DF. ErbB4 signalling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 1999;147(1):77–87.

    PubMed  CAS  Google Scholar 

  119. Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, et al. Socs2 and Elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 2006;20:1177–87.

    PubMed  CAS  Google Scholar 

  120. Motta M, Accornero P, Baratta M. Leptin and prolactin modulate the expression of SOCS-1 in association with interleukin-6 and tumor necrosis factor-alpha in mammary cells: a role in differentiated secretory epithelium. Regulatory Peptides 2004;121(1–3):163–70.

    PubMed  CAS  Google Scholar 

  121. Tonko-Geymayer S, Goupille O, Tonko M, Soratroi C, Yoshimura A, Streuli C, et al. Regulation and function of the cytokine-inducible SH-2 domain proteins, CIS and SOCS3, in mammary epithelial cells. Mol Endocrinol 2002;16(7):1680–95.

    PubMed  CAS  Google Scholar 

  122. Hanada T, Yoshida T, Kinjyo I, Minoguchi S, Yasukawa H, Kato S, et al. A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box. J Biol Chem 2001;276(44):40746–54.

    PubMed  CAS  Google Scholar 

  123. Nicholson SE, De Souza D, Fabri LJ, Corbin J, Willson TA, Zhang JG, et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci U S A 2000;97(12):6493–8.

    PubMed  CAS  Google Scholar 

  124. Lindeman GJ, Wittlin S, Lada H, Naylor MJ, Santamaria M, Zhang JG, et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev 2001;15(13):1631–6.

    PubMed  CAS  Google Scholar 

  125. Sutherland KD, Vaillant F, Alexander WS, Wintermantel TM, Forrest NC, Holroyd SL, et al. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J 2006;25(24):5805–15.

    PubMed  CAS  Google Scholar 

  126. Lund LR, Rømer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 1996;122(1):181–93.

    PubMed  CAS  Google Scholar 

  127. Le Provost F, Miyoshi K, Vilotte JL, Bierie B, Robinson GW, Hennighausen L. SOCS3 promotes apoptosis of mammary differentiated cells. Biochem Biophys Res Commun 2005;338(4):1696–701.

    PubMed  Google Scholar 

  128. Marine JC, McKay C, Wang D, Topham DJ, Parganas E, Nakajima H, et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 1999;98(5):617–27.

    PubMed  CAS  Google Scholar 

  129. Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, et al. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 1997;89(9):3148–54.

    PubMed  CAS  Google Scholar 

  130. Brisken C, Ayyannan A, Nguyen C, Heineman A, Reinhardt F, Jian T, et al. IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev Cell 2002;3(6):877–87.

    PubMed  CAS  Google Scholar 

  131. Srivastava S, Matsuda M, Hou Z, Bailey JP, Kitazawa R, Herbst MP, et al. Receptor activator of NF-kappaB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J Biol Chem 2003;278(46):46171–8.

    PubMed  CAS  Google Scholar 

  132. Cao Y, Karin M. NF-kappaB in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003;8(2):215–23.

    PubMed  Google Scholar 

  133. Kim NS, Kim HJ, Koo BK, Kwon MC, Kim YW, Cho Y, et al. Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol Cell Biol 2006;26(3):1002–13.

    PubMed  CAS  Google Scholar 

  134. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103(1):41–50.

    PubMed  CAS  Google Scholar 

  135. Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC. RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 2007;27(4):1442–54.

    PubMed  CAS  Google Scholar 

  136. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A 2003;100(17):9744–9.

    PubMed  CAS  Google Scholar 

  137. Conneely OM, Jericevic BM, Lydon JP. Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2003;8(2):205–14.

    PubMed  Google Scholar 

  138. Ormandy CJ, Hall RE, Manning DL, Robertson JF, Blamey RW, Kelly PA, et al. Coexpression and cross-regulation of the prolactin receptor and sex steroid hormone receptors in breast cancer. J Clin Endocrinol Metab 1997;82(11):3692–9.

    PubMed  CAS  Google Scholar 

  139. Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, et al. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol Endocrinol 2002;16(12):2675–91.

    PubMed  CAS  Google Scholar 

  140. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 2000;14(6):650–4.

    PubMed  CAS  Google Scholar 

  141. Rosen JM. Hormone receptor patterning plays a critical role in normal lobuloalveolar development and breast cancer progression. Breast Dis 2003;18:3–9.

    PubMed  CAS  Google Scholar 

  142. Asselin-Labat M-L, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007;9(2):201–9.

    PubMed  CAS  Google Scholar 

  143. Moorehead RA, Fata JE, Johnson MB, Khokha R. Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice. Cell Death Differ 2001;8(1):16–29.

    PubMed  CAS  Google Scholar 

  144. Troyer KL, Lee DC. Regulation of Mouse Mammary Gland Development and Tumorigenesis by the ERBB signalling network. J Mammary Gland Biol Neoplasia 2001;6(1):7–21.

    PubMed  CAS  Google Scholar 

  145. Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 2007;104(13):5455–60.

    PubMed  CAS  Google Scholar 

  146. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis required paracrine activation of stromal EGFR via ADAM17-dependant shedding of the epithelial amphiregulin. Development 2005;132:3923–33.

    PubMed  CAS  Google Scholar 

  147. Locke D, Perusinghe N, Newman T, Jayatilake H, Evans WH, Monaghan P. Developmental expression and assembly of connexins into homomeric and heteromeric gap junction hemichannels in the mouse mammary gland. J Cell Physiol 2000;183(2):228–37.

    PubMed  CAS  Google Scholar 

  148. Locke D, Jamieson S, Stein T, Liu J, Hodgins MB, Harris AL, et al. Nature of Cx30-containing channels in the adult mouse mammary gland. Cell Tissue Res 2006;328:97–107.

    PubMed  Google Scholar 

  149. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 2001;155(4):531–42.

    PubMed  CAS  Google Scholar 

  150. Bry C, Maass K, Miyoshi K, Willecke K, Ott T, Robinson GW, et al. Loss of connexin 26 in mammary epithelium during early but not during late pregnancy results in unscheduled apoptosis and impaired development. Dev Biol 2004;267:418–29.

    PubMed  CAS  Google Scholar 

  151. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109(9):1125–31.

    PubMed  CAS  Google Scholar 

  152. Rudolph M, Mcmanaman JL, Phang TL, Russell T, Kominsky DJ, Serkova NJ, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesising machine. Physiol Genomics 2007;28:323–36.

    PubMed  CAS  Google Scholar 

  153. Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 2006;235(12):3404–12.

    PubMed  CAS  Google Scholar 

  154. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006;127(5):1041–55.

    PubMed  CAS  Google Scholar 

  155. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 2005;122(1):33–43.

    PubMed  CAS  Google Scholar 

  156. Donnison M, Beaton A, Davey HW, Broadhurst R, L'Huillier P, Pfeffer PL. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 2005;132(10):2299–308.

    PubMed  CAS  Google Scholar 

  157. Oakes SR, Naylor MJ, Asselin-Labat M-L, Blazek KD, Gardiner-Garden M, Hilton HN, et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 2008; [In press].

  158. Oettgen P, Kas K, Dube A, Gu X, Grall F, Thamrongsak U, et al. Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes. J Biol Chem 1999;274(41):29439–52.

    PubMed  CAS  Google Scholar 

  159. Zhou J, Ng AY, Tymms MJ, Jermiin LS, Seth AK, Thomas RS, et al. A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13–15, a region subject to LOH and rearrangement in human carcinoma cell lines. Oncogene 1998;17(21):2719–32.

    PubMed  CAS  Google Scholar 

  160. Oikawa T. ETS transcription factors: possible targets for cancer therapy. Cancer Sci 2004;95(8):626–33.

    PubMed  CAS  Google Scholar 

  161. Zhou J, Chehab R, Tkalcevic J, Naylor MJ, Harris J, Wilson TJ, et al. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J 2005;24(3):635–44.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ormandy.

Additional information

Samantha R. Oakes and Renee L. Rogers contributed equally to this work.

Financial Support: Australian Research Council, National Health and Medical Research Council, The Cancer Institute NSW and Cancer Council NSW.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakes, S.R., Rogers, R.L., Naylor, M.J. et al. Prolactin Regulation of Mammary Gland Development. J Mammary Gland Biol Neoplasia 13, 13–28 (2008). https://doi.org/10.1007/s10911-008-9069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9069-5

Keywords

Navigation