Skip to main content

Advertisement

Log in

Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic α subunits of cerebral Na+,K+-ATPase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Na+,K+-ATPase is a membrane protein which plays a key role in the maintenance of ion homeostasis that is necessary to neuronal excitability, secondary transport and neurotransmitter uptake. Mild hyperhomocysteinemia leads to several clinical manifestations and particularly cerebral diseases; however, little is known about the mechanisms of homocysteine on cerebral Na+,K+-ATPase. In the present study, we investigated the effect of mild hyperhomocysteinemia on the activity, the immunocontent of catalytic subunits (α 1, α 2, and α 3) and the gene expression of this enzyme. We used the experimental model of mild hyperhomocysteinemia that was induced by homocysteine administration (0.03 μmol/g of body weight) twice a day, from the 30th to the 60th postpartum day. Controls received saline in the same volumes. Results showed that mild hyperhomocysteinemia significantly decreased the activity and the immunocontent of the α 1 and α 2 subunits of the Na+,K+-ATPase in cerebral cortex and hippocampus of adult rats. On the other hand, we did not observe any change in levels of Na+,K+-ATPase mRNA transcripts in such cerebral structures of rats after chronic exposure to homocysteine. The present findings support that the homocysteine modulates the Na+,K+-ATPase and this could be associated, at least in part, with the risk to the development of cerebral diseases in individuals with mild hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blanco G, Mercer RW (1998) Isozymes of the Na+,K+-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  2. Kaplan JH (2002) Biochemistry of Na+,K+-ATPase. Annu Rev Biochem 71:511–535

    Article  PubMed  CAS  Google Scholar 

  3. Teriete P, Thai K, Choi J, Marassi FM (2009) Effects of PKA phosphorylation on the conformation of the Na, K-ATPase regulatory protein FXYD1. Biochim Biophys Acta 1788:2462–2470

    Article  PubMed  CAS  Google Scholar 

  4. Xu KY (2005) Activation of (Na+ K+)-ATPase. Biochem Biophys Res Commun 338:1669–1677

    Article  PubMed  CAS  Google Scholar 

  5. Xu KY (2011) Allosteric property of the (Na(+)+K(+))-ATPase beta(1) subunit. Biochem Biophys Res Commun 415:479–484

    Article  PubMed  CAS  Google Scholar 

  6. Dempski RE, Friedrich T, Bamberg E (2009) Voltage clamp fluorometry: combining fluorescence and electrophysiological methods to examine the structure-function of the Na+,K+-ATPase. Biochim Biophys Acta 1787:714–720

    Article  PubMed  CAS  Google Scholar 

  7. Shamraj OI, Lingrel JB (1994) A putative fourth Na+, K(+)-ATPase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci USA 91:12952–12956

    Article  PubMed  CAS  Google Scholar 

  8. Tokhtaeva E, Clifford RJ, Kaplan JH, Sachs G, Vagin O (2012) Subunit isoform selectivity in assembly of Na, K-ATPase alpha-beta heterodimers. J Biol Chem 287:26115–26125

    Article  PubMed  CAS  Google Scholar 

  9. Malik N, Canfield VA, Beckers MC, Gros P, Levenson R (1996) Identification of the mammalian Na, K-ATPase 3 subunit. J Biol Chem 271:22754–22758

    Article  PubMed  CAS  Google Scholar 

  10. Geering K (2008) Functional roles of Na, K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Article  PubMed  CAS  Google Scholar 

  11. Toyoshima C, Kanai R, Cornelius F (2011) First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Structure 19:1732–1738

    Article  PubMed  CAS  Google Scholar 

  12. Kurup AR, Kurup PA (2002) Membrane Na(+)-K+ ATPase mediated cascade in bipolar mood disorder, major depressive disorder, and schizophrenia—relationship to hemispheric dominance. Int J Neurosci 112:965–982

    Article  PubMed  Google Scholar 

  13. Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  14. Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA, Inagaki C (1998) CI-ATPase and Na+,K+-ATPase activities in Alzheimer’s disease brains. Neurosci Lett 254:141–144

    Article  PubMed  CAS  Google Scholar 

  15. Wyse AT, Zugno AI, Streck EL, Matte C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na+,K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  16. Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CM, Wajner M, Wyse AT (2002) Reduction of Na+,K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  PubMed  CAS  Google Scholar 

  17. Ferreira AG, Stefanello FM, Cunha AA, da Cunha MJ, Pereira TC, Bonan CD, Bogo MR, Netto CA, Wyse AT (2011) Role of antioxidants on Na+,K+-ATPase activity and gene expression in cerebral cortex of hyperprolinemic rats. Metab Brain Dis 26:141–147

    Article  PubMed  CAS  Google Scholar 

  18. Stefanello FM, Chiarani F, Kurek AG, Wannmacher CM, Wajner M, Wyse AT (2005) Methionine alters Na+,K+-ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. Int J Dev Neurosci 23:651–656

    Article  PubMed  CAS  Google Scholar 

  19. Gamaro GD, Streck EL, Matte C, Prediger ME, Wyse AT, Dalmaz C (2003) Reduction of hippocampal Na+,K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344

    Article  PubMed  CAS  Google Scholar 

  20. Zugno AI, Valvassori SS, Scherer EB, Mattos C, Matte C, Ferreira CL, Rezin GT, Wyse AT, Quevedo J, Streck EL (2009) Na+,K+-ATPase activity in an animal model of mania. J Neural Transm 116:431–436

    Article  PubMed  CAS  Google Scholar 

  21. Raaf L, Noll C, Cherifi Mel H, Samuel JL, Delcayre C, Delabar JM, Benazzoug Y, Janel N (2011) Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats. Mol Cell Biochem 347:63–70

    Article  PubMed  CAS  Google Scholar 

  22. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29:3–20

    Article  PubMed  CAS  Google Scholar 

  23. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  24. Troen AM, Shea-Budgell M, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH (2008) B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci USA 105:12474–12479

    Article  PubMed  CAS  Google Scholar 

  25. Selhub J (2006) The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. J Nutr 136:1726S–1730S

    PubMed  CAS  Google Scholar 

  26. Scherer EB, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse AT (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29:693–699

    Article  PubMed  CAS  Google Scholar 

  27. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  29. Jorgensen PL, Hakansson KO, Karlish SJ (2003) Structure and mechanism of Na+,K+-ATPase: functional sites and their interactions. Annu Rev Physiol 65:817–849

    Article  PubMed  CAS  Google Scholar 

  30. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  PubMed  CAS  Google Scholar 

  31. Grieve A, Butcher SP, Griffiths R (1992) Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity. J Neurosci Res 32:60–68

    Article  PubMed  CAS  Google Scholar 

  32. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44

    Article  PubMed  CAS  Google Scholar 

  33. Matte C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+,K+-ATPase activity in parietal, prefrontal and cingulate cortex of young rats. Int J Dev Neurosci 22:185–190

    Article  PubMed  CAS  Google Scholar 

  34. Blaise SA, Nedelec E, Schroeder H, Alberto JM, Bossenmeyer-Pourie C, Gueant JL, Daval JL (2007) Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. Am J Pathol 170:667–679

    Article  PubMed  CAS  Google Scholar 

  35. Manolescu BN, Oprea E, Farcasanu IC, Berteanu M, Cercasov C (2010) Homocysteine and vitamin therapy in stroke prevention and treatment: a review. Acta Biochim Pol 57:467–477

    PubMed  CAS  Google Scholar 

  36. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  PubMed  CAS  Google Scholar 

  37. Herrmann W, Quast S, Ullrich M, Schultze H, Bodis M, Geisel J (1999) Hyperhomocysteinemia in high-aged subjects: relation of B-vitamins, folic acid, renal function and the methylenetetrahydrofolate reductase mutation. Atherosclerosis 144:91–101

    Article  PubMed  CAS  Google Scholar 

  38. Obeid R, Schorr H, Eckert R, Herrmann W (2004) Vitamin B12 status in the elderly as judged by available biochemical markers. Clin Chem 50:238–241

    Article  PubMed  CAS  Google Scholar 

  39. Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F (2007) Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    Article  PubMed  CAS  Google Scholar 

  40. Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, Manvelyan HM, Noble-Haeusslein LJ (2006) Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. Neuro Rx 3:143–153

    Article  PubMed  CAS  Google Scholar 

  41. Zakharova IO, Sokolova TV, Furaev VV, Rychkova MP, Avrova NF (2007) Effects of oxidative stress inducers, neurotoxins, and ganglioside GM1 on Na+,K+-ATPase in PC12 and brain synaptosomes. Zh Evol Biokhim Fiziol 43:148–154

    PubMed  CAS  Google Scholar 

  42. Pressley TA, Duran MJ, Pierre SV (2005) Regions conferring isoform-specific function in the catalytic subunit of the Na, K-pump. Front Biosci 10:2018–2026

    Article  PubMed  CAS  Google Scholar 

  43. Morth JP, Poulsen H, Toustrup-Jensen MS, Schack VR, Egebjerg J, Andersen JP, Vilsen B, Nissen P (2009) The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations. Philos Trans R Soc Lond B Biol Sci 364:217–227

    Article  PubMed  CAS  Google Scholar 

  44. McGrail KM, Phillips JM, Sweadner KJ (1991) Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J Neurosci 11:381–391

    PubMed  CAS  Google Scholar 

  45. Bottger P, Doganli C, Lykke-Hartmann K (2012) Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 36:855–871

    Article  PubMed  CAS  Google Scholar 

  46. Das G, Mallick BN (2008) Noradrenaline acting on alpha1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes. Neurochem Int 52:734–740

    Article  PubMed  CAS  Google Scholar 

  47. Shulman LM, Fox DA (1996) Dopamine inhibits mammalian photoreceptor Na+,K+-ATPase activity via a selective effect on the alpha3 isozyme. Proc Natl Acad Sci USA 93:8034–8039

    Article  PubMed  CAS  Google Scholar 

  48. Wang XQ, Yu SP (2005) Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J Neurochem 93:1515–1523

    Article  PubMed  CAS  Google Scholar 

  49. McDonough AA, Farley RA (1993) Regulation of Na, K-ATPase activity. Curr Opin Nephrol Hypertens 2:725–734

    Article  PubMed  CAS  Google Scholar 

  50. Lima FD, Oliveira MS, Furian AF, Souza MA, Rambo LM, Ribeiro LR, Silva LF, Retamoso LT, Hoffmann MS, Magni DV, Pereira L, Fighera MR, Mello CF, Royes LF (2009) Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+,K+-ATPase activity inhibition after traumatic brain injury. Brain Res 1279:147–155

    Article  PubMed  CAS  Google Scholar 

  51. Benarroch EE (2011) Na+,K+-ATPase: functions in the nervous system and involvement in neurologic disease. Neurology 76:287–293

    Article  PubMed  Google Scholar 

  52. Clapcote SJ, Duffy S, Xie G, Kirshenbaum G, Bechard AR, Rodacker Schack V, Petersen J, Sinai L, Saab BJ, Lerch JP, Minassian BA, Ackerley CA, Sled JG, Cortez MA, Henderson JT, Vilsen B, Roder JC (2009) Mutation I810N in the alpha3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. Proc Natl Acad Sci USA 106:14085–14090

    Article  PubMed  CAS  Google Scholar 

  53. Moseley AE, Williams MT, Schaefer TL, Bohanan CS, Neumann JC, Behbehani MM, Vorhees CV, Lingrel JB (2007) Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci 27:616–626

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein I, Levy T, Galili D, Ovadia H, Yirmiya R, Rosen H, Lichtstein D (2006) Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 60:491–499

    Article  PubMed  CAS  Google Scholar 

  55. Bagrov AY, Bagrov YY, Fedorova OV, Kashkin VA, Patkina NA, Zvartau EE (2002) Endogenous digitalis-like ligands of the sodium pump: possible involvement in mood control and ethanol addiction. Eur Neuropsychopharmacol 12:1–12

    Article  PubMed  CAS  Google Scholar 

  56. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na+,K+-ATPase. J Neurosci 29:8143–8155

    Article  PubMed  CAS  Google Scholar 

  57. Zieminska E, Lazarewicz JW (2006) Excitotoxic neuronal injury in chronic homocysteine neurotoxicity studied in vitro: the role of NMDA and group I metabotropic glutamate receptors. Acta Neurobiol Exp (Wars) 66:301–309

    Google Scholar 

  58. Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928

    Article  PubMed  CAS  Google Scholar 

  59. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    PubMed  CAS  Google Scholar 

  60. Matte C, Mussulini BH, Dos Santos TM, Soares FM, Simao F, Matte A, de Oliveira DL, Salbego CG, Wofchuk ST, Wyse AT (2010) Hyperhomocysteinemia reduces glutamate uptake in parietal cortex of rats. Int J Dev Neurosci 28:183–187

    Article  PubMed  CAS  Google Scholar 

  61. Machado FR, Ferreira AG, da Cunha AA, Tagliari B, Mussulini BH, Wofchuk S, Wyse AT (2011) Homocysteine alters glutamate uptake and Na+,K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26:61–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq–Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, E.B.S., Loureiro, S.O., Vuaden, F.C. et al. Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic α subunits of cerebral Na+,K+-ATPase. Mol Cell Biochem 378, 91–97 (2013). https://doi.org/10.1007/s11010-013-1598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1598-6

Keywords

Navigation