Skip to main content
Log in

Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: An overview

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

Hyperhomocysteinaemia has been regarded as a new modifiable risk factor for atherosclerosis and vascular disease. Homocysteine is a branch-point intermediate of methionine metabolism, which can be further metabolised via two alternative pathways: degraded irreversibly through the transsulphuration pathway or remethylated to methionine by the remethylation pathway. Both pathways are B-vitamin-dependent. Plasma homocysteine concentrations are determined by nongenetic and genetic factors. The metabolism of homocysteine, the role of B vitamins and the contribution of nongenetic and genetic determinants of homocysteine concentrations are reviewed. The mechanisms whereby homocysteine causes endothelial damage and vascular disease are not fully understood. Recently, a link has been postulated between homocysteine, or its intermediates, and an alterated DNA methylation pattern. The involvement of epigenetic mechanisms in the context of homocysteine and atherosclerosis, due to inhibition of transmethylation reactions, is briefly overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afman LA (2003) Homocysteine and neural tube defects. Genetic, Metabolic and Functional Studies. Thesis Catholic University Nijmegen.

  • Afman LA, Lievers KJ, van der Put NM, et al (2002) Single nucleotide polymorphisms in the transcobalamin gene: relationship with transcobalamin concentrations and risk for neural tube defects. Eur J Hum Genet 10: 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Afman LA, Lievers KJ, Kluijtmans LA, et al (2003a) Gene–gene interaction between the cystathionine beta-synthase 31 base pair variable number of tandem repeats and the methylenetetrahydrofolate reductase 677C>T polymorphism on homocysteine levels and risk for neural tube defects. Mol Genet Metab 78: 211–215.

    Article  CAS  Google Scholar 

  • Afman LA, Trijbels FJ, Blom HJ (2003b) The H475Y polymorphism in the glutamate carboxypeptidase II gene increases plasma folate without affecting the risk for neural tube defects in humans. J Nutr 133: 75–77.

    CAS  Google Scholar 

  • Akerman K, Karkola K, Kajander O (1991) Methionine adenosyltransferase activity in cultured cells and in human tissues. Biochim Biophys Acta 1097: 140–144.

    CAS  PubMed  Google Scholar 

  • Aksoy S, Szumlanski CL, Weinshilboum RM (1994) Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J Biol Chem 269: 14835–14840.

    CAS  PubMed  Google Scholar 

  • Alfthan G, Pekkanen J, Jauhiainen M, et al (1994) Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 106: 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Amouzou EK, Chabi NW, Adjalla CE, et al (2004) High prevalence of hyperhomocysteinemia related to folate deficiency and the 677C→T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. Am J Clin Nutr 79: 619–624.

    CAS  PubMed  Google Scholar 

  • Andersson A, Lindgren A, Hultberg B (1995) Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols in plasma from healthy subjects and patients with cerebral infarction. Clin Chem 41: 361–366.

    CAS  PubMed  Google Scholar 

  • Anwar A, Guéant JL, Abdelmouttaleb I, et al (2001) Hyperhomocysteinemia is related to residual glomerular filtration and folate, but not to methylenetetrahydrofolate-reductase and methionine synthase polymorphisms, in supplemented end-stage renal disease patients undergoing hemodialysis. Clin Chem Lab Med 39: 747–752.

    Article  CAS  PubMed  Google Scholar 

  • Aras O, Hanson NQ, Yang F, et al (2000) Influence of 699C→T and 1080C→T polymorphisms of the cystathionine beta-synthase gene on plasma homocysteine levels. Clin Genet 58: 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Arnadottir M, Hultberg B, Nilsson-Ehle P, et al (1996) The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest 56: 41–46.

    CAS  PubMed  Google Scholar 

  • Banerjee R, Evande R, Kabil O, et al (2003) Reaction mechanism and regulation of cystathionine beta-synthase. Biochim Biophys Acta 1647: 30–35.

    CAS  PubMed  Google Scholar 

  • Bellamy MF, McDowell IF, Ramsey MW, et al (1998) Hyperhomocysteinaemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 98: 1848–1852.

    CAS  PubMed  Google Scholar 

  • Bestor TH (1998) Gene silencing. Methylation meets acetylation. Nature 393: 311–312.

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9: 2395–2402.

    Article  CAS  PubMed  Google Scholar 

  • Blom HJ (2000a) Consequences of homocysteine export and oxidation in the vascular system. Semin Thromb Hemost 26: 227–232.

    Article  CAS  Google Scholar 

  • Blom HJ (2000b) Genetic determinants of hyperhomocysteinaemia: the roles of cystathionine beta-synthase and 5,10-methylenetetra-hydrofolate reductase. Eur J Pediatr 159: S208–212.

    CAS  Google Scholar 

  • Boers GH, Smals AG, Trijbels FJ, et al (1985) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313: 709–715.

    CAS  PubMed  Google Scholar 

  • Bostom AG, Culleton BF (1999) Hyperhomocysteinaemia in chronic renal disease. J Am Soc Nephrol 10: 891–900.

    CAS  PubMed  Google Scholar 

  • Bostom A, Brosnan JT, Hall B, et al (1995) Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 116: 59–62.

    CAS  PubMed  Google Scholar 

  • Bostom AG, Gohh RY, Beaulieu AJ, et al (1997) Treatment of Hyperhomocysteinaemia in renal transplant recipients. A randomized, placebo-controlled trial. Ann Intern Med 127: 1089–1092.

    CAS  PubMed  Google Scholar 

  • Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151: 862–877.

    CAS  PubMed  Google Scholar 

  • Botto N, Andreassi MG, Manfredi S, et al (2003) Genetic polymorphisms in folate and homocysteine metabolism as risk factors for DNA damage. Eur J Hum Genet 11: 671–678.

    Article  CAS  PubMed  Google Scholar 

  • Brattstrom L (1997) Common mutation in the methylenetetrahydrofolate reductase gene offers no support for mild Hyperhomocysteinaemia being a causal risk factor for cardiovascular disease. Circulation 96: 3805–3807.

    CAS  PubMed  Google Scholar 

  • Brattstrom LE, Hardebo JE, Hultberg BL (1984) Moderate homocysteinemia—a possible risk factor for arteriosclerotic cerebrovascular disease. Stroke 15: 1012–1016.

    CAS  PubMed  Google Scholar 

  • Brattstrom LE, Hultberg BL, Hardebo JE (1985) Folic acid responsive postmenopausal homocysteinemia. Metabolism 34: 1073–1077.

    Article  CAS  PubMed  Google Scholar 

  • Brattstrom L, Israelsson B, Norrving B, et al (1990) Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Effects of pyridoxine and folic acid treatment. Atherosclerosis 81: 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Brattstrom L, Lindgren A, Israelsson B, et al (1994) Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 236: 633–641.

    CAS  PubMed  Google Scholar 

  • Brilakis ES, Berger PB, Ballman KV, et al (2003) Methylenetetrahydrofolate reductase (MTHFR) 677C>T and methionine synthase reductase (MTRR) 66A>G polymorphisms: association with serum homocysteine and angiographic coronary artery disease in the era of flour products fortified with folic acid. Atherosclerosis 168: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Hall B, Selhub J, et al (1995) Renal metabolism of homocysteine in vivo. Biochem Soc Trans 23: 470S.

    CAS  PubMed  Google Scholar 

  • Brown KS, Kluijtmans LA, Young IS, et al (2004) The thymidylate synthase tandem repeat polymorphism is not associated with homocysteine concentrations in healthy young subjects. Hum Genet 114: 182–185.

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska A, Winska P, Balinska M (2000) Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol 47: 735–749.

    CAS  PubMed  Google Scholar 

  • Castro R, Rivera I, Ravasco P, et al (2003a) 5,10-Methylenetetra-hydrofolate reductase 677C>T and 1298A>C mutations are genetic determinants of elevated homocysteine. QJM 96: 297–303.

    Article  CAS  Google Scholar 

  • Castro R, Rivera I, Struys EA, et al (2003b) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49: 1292–1296.

    CAS  Google Scholar 

  • Castro R, Rivera I, Ravasco P, et al (2004) 5,10-Methylenetetra-hydrofolate reductase 677C>T and 1298A>C mutations are associated with DNA hypomethylation. J Med Genet 41: 454–458.

    Article  CAS  PubMed  Google Scholar 

  • Castro R, Rivera I, Martins C, et al (2005) Intracellular S-adenosylhomocysteine increased levels are associated with DNA hypomethylation in HUVEC. J Mol Med 83: 831–836.

    Article  CAS  PubMed  Google Scholar 

  • Caudill MA, Wang JC, Melnyk S, et al (2001) Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 131: 2811–2818.

    CAS  PubMed  Google Scholar 

  • Cedar H (1988) DNA methylation and gene activity. Cell 53: 3–4.

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, et al (1998) Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet 351: 36–37.

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, et al (1999) Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinaemia: an effect reversible with vitamin C therapy. Circulation 99: 1156–1160.

    CAS  PubMed  Google Scholar 

  • Chango A, Boisson F, Barbe F, et al (2000a) The effect of 677C→T and 1298A→C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. Br J Nutr 83: 593–596.

    CAS  Google Scholar 

  • Chango A, Emery-Fillon N, de Courcy GP, et al (2000b) A polymorphism (80G→A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70: 310–315.

    Article  CAS  Google Scholar 

  • Chen J, Stampfer MJ, Ma J, et al (2001b) Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154: 667–672.

    Article  CAS  Google Scholar 

  • Chen Z, Karaplis AC, Ackerman SL, et al (2001a) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinaemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10: 433–443.

    CAS  Google Scholar 

  • Christen WG, Ajani UA, Glynn RJ, et al (2000) Blood levels of homocysteine and increased risks of cardiovascular disease: causal or casual? Arch Intern Med 160: 422–434.

    Article  CAS  PubMed  Google Scholar 

  • Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nature Geneties 10: 20–27.

    CAS  Google Scholar 

  • Clarke S (1993) Protein methylation. Curr Opin Cell Biol 5: 977–983.

    Article  CAS  PubMed  Google Scholar 

  • Cottington EM, LaMantia C, Stabler SP, et al (2002) Adverse event associated with methionine loading test: a case report. Arterioscler Thromb Vasc Biol 22: 1046–1050.

    Google Scholar 

  • Cronin S, Furie KL, Kelly PJ (2005) Dose-related association of MTHFR 677T allele with risk of ischemic stroke: evidence from a cumulative meta-analysis. Stroke 36:1581–1587.

    Article  CAS  PubMed  Google Scholar 

  • Dayal S, Bottiglieri T, Arning E, et al (2001) Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ Res 88: 1203–1209.

    CAS  PubMed  Google Scholar 

  • de Bree A, Verschuren WM, Blom HJ, et al (2003) Coronary heart disease mortality, plasma homocysteine, and B-vitamins: a prospective study. Atherosclerosis 166: 369–377.

    CAS  PubMed  Google Scholar 

  • de Stefano V, Dekou V, Nicaud V, et al (1998) Linkage disequilibrium at the cystathionine beta synthase (CBS) locus and the association between genetic variation at the CBS locus and plasma levels of homocysteine. The Ears II Group. European Atherosclerosis Research Study. Ann Hum Genet 62: 481–490.

    Article  PubMed  Google Scholar 

  • den Heijer M, Koster T, Blom HJ, et al (1996) Hyperhomocysteinaemia as a risk factor for deep-vein thrombosis. N Engl J Med 334: 759–762.

    Article  CAS  PubMed  Google Scholar 

  • den Heijer M, Rosendaal FR, Blom HJ, et al (1998) Hyperhomocysteinaemia and venous thrombosis: a meta-analysis. Thromb Haemost 80: 874–877.

    CAS  PubMed  Google Scholar 

  • Devlin AM, Ling EH, Peerson JM, et al (2000) Glutamate carboxypeptidase II: a polymorphism associated with lower levels of serum folate and hyperhomocysteinaemia. Hum Mol Genet 9: 2837–2844.

    Article  CAS  PubMed  Google Scholar 

  • Devlin AM, Arning E, Bottiglieri T, et al (2004) Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 103:2624–2629.

    Article  CAS  PubMed  Google Scholar 

  • Devlin AM, Bottiglieri T, Domann FE, et al (2005) Tissue-specific changes in H19 methylation and expression in mice with hyperhomocysteinemia. J Biol Chem 280:25506–25511.

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Yoon W, Goldschmidt-Clermont PJ (2002) DNA methylation and atherosclerosis. J Nutr 132: 2406S–2409S.

    Google Scholar 

  • Eberhardt RT, Forgione MA, Cap A, et al (2000) Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 106: 483–491.

    CAS  PubMed  Google Scholar 

  • Evans RW, Shaten BJ, Hempel JD, et al (1997) Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscler Thromb Vasc Biol 17: 1947–1953.

    CAS  PubMed  Google Scholar 

  • Feix A, Winkelmayer WC, Eberle C, et al (2004) Methionine synthase reductase MTRR 66A>G has no effect on total homocysteine, folate, and vitamin B12 concentrations in renal transplant patients. Atherosclerosis 174:43–48.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157: S40–44.

    CAS  PubMed  Google Scholar 

  • Finkelstein JD, Martin JJ (1986) Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem 261: 1582–1587.

    CAS  PubMed  Google Scholar 

  • Fodinger M, Dierkes J, Skoupy S, et al (2003a) Effect of glutamate carboxypeptidase II and reduced folate carrier polymorphisms on folate and total homocysteine concentrations in dialysis patients. J Am Soc Nephrol 14: 1314–1319.

    Article  Google Scholar 

  • Fodinger M, Veitl M, Skoupy S, et al (2003b) Effect of TCN2 776C>G on vitamin B12 cellular availability in end-stage renal disease patients. Kidney Int 64: 1095–1100.

    Article  CAS  Google Scholar 

  • Fokkema MR, Dijck-Brouwer DA, van Doormaal JJ, et al (2003a) Low diagnostic value of fasting and post-methionine load homocysteine tests. A study in Dutch subjects with homocysteine test indications. Clin Chim Acta 331: 153–157.

    Article  CAS  Google Scholar 

  • Fokkema MR, Gilissen MF, Van Doormaal JJ, et al (2003b) Fasting vs nonfasting plasma homocysteine concentrations for diagnosis of Hyperhomocysteinaemia. Clin Chem 49: 818–821.

    CAS  Google Scholar 

  • Fowler B, Schutgens RB, Rosenblatt DS, et al (1997) Folate-responsive homocystinuria and megaloblastic anaemia in a female patient with functional methionine synthase deficiency (cblE disease). J Inherit Metab Dis 20: 731–741.

    CAS  PubMed  Google Scholar 

  • Friedman G, Goldschmidt N, Friedlander Y, et al (1999) A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr 129: 1656–1661.

    CAS  PubMed  Google Scholar 

  • Friso S, Choi SW, Girelli D, et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99: 5606–5611.

    Google Scholar 

  • Friso S, Girelli D, Trabetti E, et al (2005) The MTHFR 1298A>C polymorphism and genomic DNA methylation in human lymphocytes. Cancer Epidemiol Biomarkers Prev 14: 938–943.

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa NK, Martin JM, Wurthmann A, et al (2000) Sex-related differences in methionine metabolism and plasma homocysteine concentrations. Am J Clin Nutr 72: 22–29.

    CAS  PubMed  Google Scholar 

  • Ganji V, Kafai MR (2003) Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 77: 826–833.

    CAS  PubMed  Google Scholar 

  • Gaughan DJ, Kluijtmans LA, Barbaux S, et al (2001) The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 157: 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Geisel J, Hubner U, Bodis M, et al (2003) The role of genetic factors in the development of hyperhomocysteinemia. Clin Chem Lab Med 41: 1427–1434.

    CAS  PubMed  Google Scholar 

  • Giltay EJ, Hoogeveen EK, Elbers JM, et al (1998) Effects of sex steroids on plasma total homocysteine levels: a study in transsexual males and females. J Clin Endocrinol Metab 83: 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Christensen B, Rosenblatt DS, et al (1996) Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet 59: 1268–1275.

    CAS  PubMed  Google Scholar 

  • Goyette P, Frosst P, Rosenblatt DS, et al (1995) Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet 56: 1052–1059.

    CAS  PubMed  Google Scholar 

  • Goyette P, Sumner JS, Milos R, et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nature Genetics 7: 551.

    Article  CAS  PubMed  Google Scholar 

  • Graham IM, O’Callaghan P (2002) Vitamins, homocysteine and cardiovascular risk. Cardiovasc Drugs Ther 16: 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Guenther BD, Sheppard CA, Tran P, et al (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human Hyperhomocysteinaemia. Nature Structural Biology 6: 359–365.

    CAS  PubMed  Google Scholar 

  • Hackam DG, Anand SS (2003) Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 290: 932–940.

    Article  PubMed  Google Scholar 

  • Hanson NQ, Aras O, Yang F, et al (2001) C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clin Chem 47: 661–666.

    CAS  PubMed  Google Scholar 

  • Harmon DL, Shields DC, Woodside JV, et al (1999) Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 17: 298–309.

    Article  CAS  PubMed  Google Scholar 

  • Haynes WG (2002) Hyperhomocysteinaemia, vascular function and atherosclerosis: effects of vitamins. Cardiovasc Drugs Ther 16: 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Heil SG, Lievers KJ, Boers GH, et al (2000) Betaine-homocysteine methyltransferase (BHMT): genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans. Mol Genet Metab 71: 511–519.

    Article  CAS  PubMed  Google Scholar 

  • Heil SG, van der Put NM, Waas ET, et al (2001) Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab 73: 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka M, Kato K, Saito Y, et al (2004) Gene–nutrient and gene–gene interactions of controlled folate intake by Japanese women. Biochem Biophys Res Commun 316: 1210121–1210126.

    Article  Google Scholar 

  • Homocysteine Lowering Trialists’ Collaboration (1998) Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. BMJ 316: 894–898.

    Google Scholar 

  • Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288: 2015–2022.

    Article  Google Scholar 

  • House JD, Brosnan ME, Brosnan JT (1997a) Characterization of homocysteine metabolism in the rat kidney. Biochem J 328: 287–292.

    CAS  Google Scholar 

  • House JD, Brosnan ME, Brosnan JT (1997b) Renal homocysteine metabolism. Contrib Nephrol 121: 79–84.

    CAS  Google Scholar 

  • Hu Y, Komoto J, Huang Y, et al (1999) Crystal structure of S-adenosylhomocysteine hydrolase from rat liver. Biochemistry 38: 8323–8333.

    CAS  PubMed  Google Scholar 

  • Hultberg B, Andersson A, Arnadottir M (1995) Reduced, free and total fractions of homocysteine and other thiol compounds in plasma from patients with renal failure. Nephron 70: 62–67.

    CAS  PubMed  Google Scholar 

  • Hyndman ME, Bridge PJ, Warnica JW, et al (2000) Effect of heterozygosity for the methionine synthase 2756 A→G mutation on the risk for recurrent cardiovascular events. Am J Cardiol 86: 1144–1146.

    Article  CAS  PubMed  Google Scholar 

  • Iguchi-Ariga SM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3: 612–619.

    CAS  PubMed  Google Scholar 

  • Ingrosso D, Perna AF (1998) D-Amino acids in aging erythrocytes. EXS 85: 119–141.

    CAS  PubMed  Google Scholar 

  • Ingrosso D, Cimmino A, Perna AF, et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361: 1693–1699.

    Article  CAS  PubMed  Google Scholar 

  • Jacques PF, Bostom AG, Selhub J, et al (2003) Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study. Atherosclerosis 166: 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Jacques PF, Rosenberg IH, Rogers G, et al (1999) Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr 69: 482–489.

    CAS  PubMed  Google Scholar 

  • Jacques PF, Bostom AG, Wilson PW, et al (2001) Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 73: 613–621.

    CAS  PubMed  Google Scholar 

  • Jacques PF, Kalmbach R, Bagley PJ, et al (2002) The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr 132: 283–288.

    CAS  PubMed  Google Scholar 

  • Janosikova B, Zavadakova P, Kozich V (2005) Single-nucleotide polymorphisms in genes relating to homocysteine metabolism: how applicable are public SNP databases to a typical European population? Eur J Hum Genet 13:86–95.

    CAS  PubMed  Google Scholar 

  • Kanani PM, Sinkey CA, Browning RL, et al (1999) Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100: 1161–1168.

    CAS  PubMed  Google Scholar 

  • Kang SS, Wong PW, Cook HY, et al (1986) Protein-bound homocyst(e)ine. A possible risk factor for coronary artery disease. J Clin Invest 77: 1482–1486.

    CAS  PubMed  Google Scholar 

  • Kang SS, Zhou J, Wong PW, et al (1988) Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43: 414–421.

    CAS  PubMed  Google Scholar 

  • Kealey C, Brown KS, Woodside JV, et al (2005) A common insertion/deletion polymorphism of the thymidylate synthase (TYMS) gene is a determinant of red blood cell folate and homocysteine concentrations. Hum Genet 116:347–353.

    Article  CAS  PubMed  Google Scholar 

  • Kelly PJ, Rosand J, Kistler JP, et al (2002) Homocysteine, MTHFR 677C→T polymorphism, and risk of ischemic stroke: results of a meta-analysis. Neurology 59: 529–536.

    CAS  PubMed  Google Scholar 

  • Kerins DM, Koury MJ, Capdevila A, et al (2001) Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am J Clin Nutr 74: 723–729.

    CAS  PubMed  Google Scholar 

  • Kery V, Poneleit L, Meyer JD, et al (1999) Binding of pyridoxal 5′-phosphate to the heme protein human cystathionine beta-synthase. Biochemistry 38: 2716–2724.

    Article  CAS  PubMed  Google Scholar 

  • Klangby U, Okan I, Magnusson KP, et al (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91: 1680–1687.

    CAS  PubMed  Google Scholar 

  • Klerk M, Verhoef P, Clarke R, et al (2002) MTHFR 677C–>T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288: 2023–2031.

    Article  CAS  PubMed  Google Scholar 

  • Klerk M, Lievers KJ, Kluijtmans LA, et al (2003) The 2756A>G variant in the gene encoding methionine synthase: its relation with plasma homocysteine levels and risk of coronary heart disease in a Dutch case-control study. Thromb Res 110: 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Kluijtmans LA, Boers GH, Trijbels FJ, et al (1997) A common 844INS68 insertion variant in the cystathionine beta-synthase gene. Biochem Mol Med 62: 23–25.

    Article  CAS  PubMed  Google Scholar 

  • Kluijtmans LA, Young IS, Boreham CA, et al (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101: 2483–2488.

    Article  CAS  PubMed  Google Scholar 

  • Knekt P, Reunanen A, Alfthan G, et al (2001) Hyperhomocystinemia: a risk factor or a consequence of coronary heart disease? Arch Intern Med 161: 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  • Kruger WD, Evans AA, Wang L, et al (2000) Polymorphisms in the CBS gene associated with decreased risk of coronary artery disease and increased responsiveness to total homocysteine lowering by folic acid. Mol Genet Metab 70: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Krupkova-Meixnerova L, Vesela K, Vitova A, et al (2002) Methionine-loading test: evaluation of adverse effects and safety in an epidemiological study. Clin Nutr 21: 151–156.

    CAS  PubMed  Google Scholar 

  • Leclerc D, Wilson A, Dumas R, et al (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95: 3059–3064.

    Google Scholar 

  • Lee ME, Wang H (1999) Homocysteine and hypomethylation. A novel link to vascular disease. Trends Cardiovasc Med 9: 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Lentz SR, Sobey CG, Piegors DJ, et al (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98: 24–29.

    CAS  PubMed  Google Scholar 

  • Lentz SR, Erger RA, Dayal S, et al (2000) Folate dependence of Hyperhomocysteinaemia and vascular dysfunction in cystathionine beta-synthase-deficient mice. Am J Physiol Heart Circ Physiol 279: H970–975.

    CAS  PubMed  Google Scholar 

  • Lievers KJ (2002) Genetics of Hyperhomocysteinaemia in vascular disease. Thesis, Catholic University Nijmegen.

  • Lievers KJ, Boers GH, Verhoef P, et al (2001a) A second common variant in the methylenetetrahydrofolate reductase (MTHFR) gene and its relationship to MTHFR enzyme activity, homocysteine, and cardiovascular disease risk. J Mol Med 79: 522–528.

    Article  CAS  Google Scholar 

  • Lievers KJ, Kluijtmans LA, Heil SG, et al (2001b) A 31 bp VNTR in the cystathionine beta-synthase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine concentration. Eur J Hum Genet 9(8): 583–589.

    Article  CAS  Google Scholar 

  • Lievers KJ, Afman LA, Kluijtmans LA, et al (2002a) Polymorphisms in the transcobalamin gene: association with plasma homocysteine in healthy individuals and vascular disease patients. Clin Chem 48: 1383–1389.

    CAS  Google Scholar 

  • Lievers KJ, Kluijtmans LA, Boers GH, et al (2002b) Influence of a glutamate carboxypeptidase II (GCPII) polymorphism (1561C→T) on plasma homocysteine, folate and vitamin B(12) levels and its relationship to cardiovascular disease risk. Atherosclerosis 164: 269–273.

    Article  CAS  Google Scholar 

  • Lievers KJ, Kluijtmans LA, Blom HJ (2003a) Genetics of hyperhomocysteinaemia in cardiovascular disease. Ann Clin Biochem 40: 46–59.

    Article  CAS  Google Scholar 

  • Lievers KJ, Kluijtmans LA, Heil SG, et al (2003b) Cystathionine beta-synthase polymorphisms and hyperhomocysteinaemia: an association study. Eur J Hum Genet 11: 23–29.

    Article  CAS  Google Scholar 

  • Loehrer FM, Tschopl M, Angst CP, et al (2001) Disturbed ratio of erythrocyte and plasma S-adenosylmethionine/S-adenosylhomocysteine in peripheral arterial occlusive disease. Atherosclerosis 154: 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Lund G, Andersson L, Lauria M, et al (2004) DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 279:29147–29154.

    CAS  PubMed  Google Scholar 

  • Lussier-Cacan S, Xhignesse M, Piolot A, et al (1996) Plasma total homocysteine in healthy subjects: sex-specific relation with biological traits. Am J Clin Nutr 64: 587–593.

    CAS  PubMed  Google Scholar 

  • Maddox DM, Manlapat A, Roon P, et al (2003) Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart. BMC Dev Biol 3: 6.

    Article  PubMed  Google Scholar 

  • Malinow MR, Kang SS, Taylor LM, et al (1989) Prevalence of hyperhomocyst(e)inemia in patients with peripheral arterial occlusive disease. Circulation 79: 1180–1188.

    CAS  PubMed  Google Scholar 

  • Mansoor MA, Bergmark C, Svardal AM, et al (1995) Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Homocysteine and peripheral vascular disease. Arterioscler Thromb Vasc Biol 15: 232–240.

    CAS  PubMed  Google Scholar 

  • McCaddon A, Blennow K, Hudson P, et al (2001) Transcobalamin polymorphism and homocysteine. Blood 98: 3497–3499.

    Article  CAS  PubMed  Google Scholar 

  • McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56: 111–128.

    CAS  PubMed  Google Scholar 

  • McDowell IF, Lang D (2000) Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr 130: 369S–372S.

    CAS  PubMed  Google Scholar 

  • Meier M, Oliveriusova J, Kraus JP, et al (2003) Structural insights into mutations of cystathionine beta-synthase. Biochim Biophys Acta 1647: 206–213.

    CAS  PubMed  Google Scholar 

  • Meisel C, Cascorbi I, Gerloff T, et al (2001) Identification of six methylenetetrahydrofolate reductase (MTHFR) genotypes resulting from common polymorphisms: impact on plasma homocysteine levels and development of coronary artery disease. Atherosclerosis 154: 651–658.

    Article  CAS  PubMed  Google Scholar 

  • Miller JW, Ramos MI, Garrod MG, et al (2002) Transcobalamin II 775G>C polymorphism and indices of vitamin B12 status in healthy older adults. Blood 100: 718–720.

    Article  CAS  PubMed  Google Scholar 

  • Moller J, Nielsen GM, Tvedegaard KC, et al (2000) A meta-analysis of cerebrovascular disease and hyperhomocysteinaemia. Scand J Clin Lab Invest 60: 491–499.

    CAS  PubMed  Google Scholar 

  • Morin I, Devlin AM, Leclerc D, et al (2003) Evaluation of genetic variants in the reduced folate carrier and in glutamate carboxypeptidase II for spina bifida risk. Mol Genet Metab 79: 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Levy HL, Krauss JP (2001) Disorders of transsulfuration In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assor. eds. The Metabolic and Molecular Bases of Inherited Disease. 8th edn, vol. 2. New York: McGraw-Hill, 4: 2007–2056.

  • Mudd SH, Skovby F, Levy HL, et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37: 1–31.

    CAS  PubMed  Google Scholar 

  • Munke M, Kraus JP, Ohura T, et al (1988) The gene for cystathionine beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am J Hum Genet 42: 550–559.

    CAS  PubMed  Google Scholar 

  • Namour F, Olivier J, Abdelmouttaleb I, et al (2001) Transcobalamin codon 259 polymorphism in HT-29 and Caco-2 cells and in Caucasians: relation to transcobalamin and homocysteine concentration in blood. Blood 97: 1092–1098.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S, McConnell J, Little J, et al (2004) Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev 13: 1436–1443.

    CAS  PubMed  Google Scholar 

  • Nygard O, Vollset SE, Refsum H, et al (1995) Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 274: 1526–1533.

    Article  CAS  PubMed  Google Scholar 

  • Nygard O, Refsum H, Ueland PM, et al (1998) Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 67: 263–270.

    CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Parish CA, Rando RR (1994) Functional significance of G protein carboxymethylation. Biochemistry 33: 9986–9991.

    Article  CAS  PubMed  Google Scholar 

  • Perna AF, De Santo NG, Ingrosso D (1997) Adverse effects of hyperhomocysteinemia and their management by folic acid. Miner Electrolyte Metab 23: 174–178.

    CAS  PubMed  Google Scholar 

  • Perna AF, Ingrosso D, Castaldo P, et al (2001) Homocysteine and transmethylations in uremia. Kidney Int Suppl 78: S230–233.

    CAS  PubMed  Google Scholar 

  • Perna AF, Ingrosso D, Lombardi C, et al (2003) Possible mechanisms of homocysteine toxicity. Kidney Int Suppl 84: S137–140.

    CAS  PubMed  Google Scholar 

  • Perna AF, Ingrosso D, Satta E, et al (2004) Homocysteine metabolism in renal failure. Curr Opin Clin Nutr Metab Care 7: 53–57.

    CAS  PubMed  Google Scholar 

  • Philips MR, Pillinger MH, Staud R, et al (1993) Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science 259: 977–980.

    CAS  PubMed  Google Scholar 

  • Quere I, Hillaire-Buys D, Brunschwig C, et al (1997) Effects of homocysteine on acetylcholine- and adenosine-induced vasodilatation of pancreatic vascular bed in rats. Br J Pharmacol 122: 351–357.

    CAS  PubMed  Google Scholar 

  • Raghuveer G, Sinkey CA, Chenard C, et al (2001) Effect of vitamin E on resistance vessel endothelial dysfunction induced by methionine. Am J Cardiol 88: 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Guttormsen AB, Fiskerstrand T, et al (1998) Hyperhomocysteinaemia in terms of steady-state kinetics. Eur J Pediatr 157 (Supplement 2): S45–49.

    CAS  PubMed  Google Scholar 

  • Refsum H, Fredriksen A, Meyer K, et al (2004a) Birth prevalence of homocystinuria. J Pediatr 144: 830–822.

    Google Scholar 

  • Refsum H, Smith AD, Ueland PM, et al (2004b) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50: 3–32.

    CAS  Google Scholar 

  • Rosenblatt DS, Fenton WA (2001) Inherited disorders of folate and cobalamin transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Basies of Inherited Disease, 8th edn, vol. 3. New York: McGraw Hill, 3897–3933.

  • Rothenberg SP, Quadros EV (1995) Transcobalamin II and the membrane receptor for the transcobalamin II-cobalamin complex. Baillieres Clin Haematol 8: 499–514.

    CAS  PubMed  Google Scholar 

  • Rozen R (2000) Genetic modulation of homocysteinemia. Semin Thromb Hemost 26: 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Weir DG, Molloy A, et al (1994) Folic acid metabolism and mechanisms of neural tube defects. Ciba Found Symp 181: 180–191.

    Google Scholar 

  • Seetharam B, Bose S, Li N (1999) Cellular import of cobalamin (Vitamin B-12). J Nutr 129: 1761–1764.

    CAS  PubMed  Google Scholar 

  • Selhub J, Jacques PF, Wilson PW, et al (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270: 2693–2698.

    Article  CAS  PubMed  Google Scholar 

  • Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45: 263–335.

    CAS  PubMed  Google Scholar 

  • Sibani S, Christensen B, O’Ferrall E, et al (2000) Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat 15: 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Skovby F, Krassikoff N, Francke U (1984) Assignment of the gene for cystathionine beta-synthase to human chromosome 21 in somatic cell hybrids. Hum Genet 65: 291–294.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova J, Janosikova B, Terwilliger JD, et al (2001) Cystathionine beta-synthase deficiency in Central Europe: discrepancy between biochemical and molecular genetic screening for homocystinuric alleles. Hum Mutat 18: 548–549.

    CAS  PubMed  Google Scholar 

  • Souto JC, Blanco-Vaca F, Soria JM, et al (2005) A genomewide exploration suggests a new candidate gene at chromosome 11q23 as the major determinant of plasma homocysteine levels: results from the GAIT project. Am J Hum Genet 76: 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Stehouwer CD, Weijenberg MP, van den Berg M, et al (1998) Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a 10-year follow-up. Arterioscler Thromb Vasc Biol 18: 1895–1901.

    CAS  PubMed  Google Scholar 

  • Stern LL, Mason JB, Selhub J, et al (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 9: 849–853.

    CAS  PubMed  Google Scholar 

  • Stipanuk MH (2004) Sulphur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nut 24: 539–577.

    CAS  Google Scholar 

  • Sunder-Plassmann G, Fodinger M (2003) Genetic determinants of the homocysteine level. Kidney Int Suppl 84: S141–144.

    CAS  PubMed  Google Scholar 

  • Suormala T, Baumgartner MR, Coelho D, et al (2004) The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem 279: 42742–42749.

    Article  CAS  PubMed  Google Scholar 

  • Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3: 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Trinh BN, Ong CN, Coetzee GA, et al (2002) Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels. Hum Genet 111: 299–302.

    Article  CAS  PubMed  Google Scholar 

  • Tsai MY, Bignell M, Schwichtenberg K, et al (1996) High prevalence of a mutation in the cystathionine beta-synthase gene. Am J Hum Genet 59: 1262–1267.

    CAS  PubMed  Google Scholar 

  • Tsai MY, Yang F, Bignell M, et al (1999) Relation between plasma homocysteine concentration, the 844ins68 variant of the cystathionine beta-synthase gene, and pyridoxal-5′-phosphate concentration. Mol Genet Metab 67: 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Tsai MY, Bignell M, Yang F, et al (2000) Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels. Atherosclerosis 149: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Ueland PM (1995) Homocysteine species as components of plasma redox thiol status. Clin Chem 41: 340–342.

    CAS  PubMed  Google Scholar 

  • Ueland PM, Hustad S, Schneede J, et al (2001) Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci 22: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Pacher P, Rischak K, et al (1999) Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced Hyperhomocysteinaemia. Arterioscler Thromb Vasc Biol 19: 1899–1904.

    CAS  PubMed  Google Scholar 

  • Usui M, Matsuoka H, Miyazaki H, et al (1999) Endothelial dysfunction by acute hyperhomocyst(e)inaemia: restoration by folic acid. Clin Sci (Lond) 96: 235–239.

    CAS  Google Scholar 

  • van der Molen EF, Hiipakka MJ, van Lith-Zanders H, et al (1997) Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency. Thromb Haemost 78: 827–833.

    CAS  PubMed  Google Scholar 

  • van der Put NM, Gabreels F, Stevens EM, et al (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62: 1044–1051.

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Martinez C, Ordovas JM, Wilson PW, et al (2002) The glutamate carboxypeptidase gene II (C>T) polymorphism does not affect folate status in the Framingham Offspring cohort. J Nutr 132: 1176–1179.

    CAS  PubMed  Google Scholar 

  • Vaughn JD, Bailey LB, Shelnutt KP, et al (2004) Methionine synthase reductase 66A→G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C→T variant. J Nutr 134: 2985–2990.

    CAS  PubMed  Google Scholar 

  • Vilkaitis G, Merkiene E, Serva S, et al (2001) The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase. J Biol Chem 276: 20924–20934.

    Article  CAS  PubMed  Google Scholar 

  • von Castel-Dunwoody KM, Kauwell GP, Shelnutt KP, et al (2005) Transcobalamin 776C→G polymorphism negatively affects vitamin B-12 metabolism. Am J Clin Nutr 81: 1436–1441.

    CAS  PubMed  Google Scholar 

  • Voutilainen S, Lakka TA, Hamelahti P, et al (2000) Plasma total homocysteine concentration and the risk of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. J Intern Med 248: 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325: 1202.

    PubMed  Google Scholar 

  • Wang H, Yoshizumi M, Lai K, et al (1997) Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem 272: 25380–25385.

    CAS  PubMed  Google Scholar 

  • Watkins D, Ru M, Hwang HY, et al (2002) Hyperhomocysteinaemia due to methionine synthase deficiency, cblG: structure of the MTR gene, genotype diversity, and recognition of a common mutation, P1173L. Am J Hum Genet 71: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg I, Tran P, Christensen B, et al (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64: 169–172.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg IS, Jacques PF, Selhub J, et al (2001) The 1298A→C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156: 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg IS, Park E, Ballman KV, et al (2003) Investigations of a common genetic variant in betaine-homocysteine methyltransferase (BHMT) in coronary artery disease. Atherosclerosis 167: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Whetstine JR, Flatley RM, Matherly LH (2002) The human reduced folate carrier gene is ubiquitously and differentially expressed in normal human tissues: identification of seven non-coding exons and characterization of a novel promoter. Biochem J 367: 629–640.

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B, Bamforth F, Li Z, et al (2003) Geographical and ethnic variation of the 677C>T allele of 5,10-methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 40: 619–625.

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DE, Wilcken B (1976) The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 57: 1079–1082.

    CAS  PubMed  Google Scholar 

  • Wilcken DE, Wang XL, Wilcken B (1997) Methylenetetrahydrofolate reductase (MTHFR) mutation, homocyst(e)ine, and coronary artery disease. Circulation 96: 2738–2740.

    CAS  PubMed  Google Scholar 

  • Wilson A, Leclerc D, Rosenblatt DS, et al (1999a) Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism. Hum Mol Genet 8: 2009–2016.

    CAS  Google Scholar 

  • Wilson A, Platt R, Wu Q, et al (1999b) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab 67: 317–323.

    Article  CAS  Google Scholar 

  • Winkelmayer WC, Eberle C, Sunder-Plassmann G, et al (2003) Effects of the glutamate carboxypeptidase II (GCP2 1561C>T) and reduced folate carrier (RFC1 80G>A) allelic variants on folate and total homocysteine levels in kidney transplant patients. Kidney Int 63: 2280–2285.

    CAS  PubMed  Google Scholar 

  • Wollesen F, Brattstrom L, Refsum H, et al (1999) Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 55: 1028–1035.

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Proefke SA, Bhushan A, et al (1995) Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem 270: 17468–17475.

    CAS  PubMed  Google Scholar 

  • Wouters MG, Moorrees MT, van der Mooren MJ, et al (1995) Plasma homocysteine and menopausal status. Eur J Clin Invest 25: 801–805.

    CAS  PubMed  Google Scholar 

  • Wu LL, Wu J, Hunt SC, et al (1994) Plasma homocyst(e)ine as a risk factor for early familial coronary artery disease. Clin Chem 40: 552–561.

    CAS  PubMed  Google Scholar 

  • Yamada K, Chen Z, Rozen R, et al (2001) Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci USA 98: 14853–14858.

    Google Scholar 

  • Yang F, Hanson NQ, Schwichtenberg K, et al (2000) Variable number tandem repeat in exon/intron border of the cystathionine beta-synthase gene: a single nucleotide substitution in the second repeat prevents multiple alternate splicing. Am J Med Genet 95: 385–390.

    Article  CAS  PubMed  Google Scholar 

  • Yap S (2003) Classical homocystinuria: vascular risk and its prevention. J Inherit Metab Dis 26:259–265.

    Article  CAS  PubMed  Google Scholar 

  • Yap S, Boers GH, Wilcken B, et al (2001) Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 21:2080–2085.

    CAS  PubMed  Google Scholar 

  • Yates Z, Lucock M (2005) G80A reduced folate carrier SNP modulates cellular uptake of folate and affords protection against thrombosis via a non homocysteine related mechanism. Life Sci 77: 2735–2742.

    Article  CAS  PubMed  Google Scholar 

  • Yi P, Melnyk S, Pogribna M, et al (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275: 29318–29323.

    CAS  PubMed  Google Scholar 

  • Zaina S, Lindholm MW, Lund G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr 135: 5–8.

    CAS  PubMed  Google Scholar 

  • Zhang F, Slungaard A, Vercellotti GM, et al (1998) Superoxide-dependent cerebrovascular effects of homocysteine. Am J Physiol 274: 1704–1711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tavares de Almeida.

Additional information

Communicating editor: Guy Besley

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, R., Rivera, I., Blom, H.J. et al. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: An overview. J Inherit Metab Dis 29, 3–20 (2006). https://doi.org/10.1007/s10545-006-0106-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0106-5

Keywords

Navigation