Skip to main content
Log in

NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study aims to investigate the unclear molecular relationship involved in the activation of intrinsic pathway of apoptosis and NSAID-activated gene-1 (NAG-1) induction as a putative target in NSAIDs-mediated chemoprevention of colorectal cancer. Male Sprague-Dawley rats were administered with a colon-specific pro-carcinogen, 1,2-dimethylhydrazine dihydrochloride to achieve the early stages of colorectal cancer. Histopathological examination was performed for the analysis of neoplastic lesions while flow cytometry was performed for the relative quantification of intracellular reactive oxygen species (ROS), differential mitochondrial membrane potential (MMP or ΔΨ M), and apoptotic events. Various target biomolecules were analyzed either for their mRNA or protein expression profiles via RT-PCR and quantitative Real-Time PCR, or Western blotting and immunofluorescence, respectively. Enhanced gene as well as protein expression of pro-apoptotic agents was observed with the daily oral administration of two NSAIDs viz. Sulindac (cyclooxygenase (COX)-non-specific) and Celecoxib (a selective COX-2 inhibitor). A significant increase in early growth response-1 (EGR-1) protein expression and nuclear localization in NSAIDs co-administered animals may have positively regulated the expression of NAG-1 with a significant enhancement of intracellular ROS in turn decreasing the ΔΨ M to initiate apoptosis. In silico molecular docking analysis also showed that Sulindac and Celecoxib can block the active site pocket of B-cell lymphoma-extra large (Bcl-xL, anti-apoptotic transmembrane mitochondrial protein) which could be a putative mechanism followed by these NSAIDs to overcome anti-apoptotic properties of the molecule. NSAIDs-mediated up-regulation of EGR-1 and thereby NAG-1 along with implication of higher ROS load may positively regulate the intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang M, Milner J (2003) Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev 17:832–837

    Article  PubMed  CAS  Google Scholar 

  2. Jana NR (2008) NSAIDs and apoptosis. Cell Mol Life Sci 65:1295–1301

    Article  PubMed  CAS  Google Scholar 

  3. Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenaseindependent actions of cyclooxygenase inhibitors. Faseb J 15:2057–2072

    Article  PubMed  CAS  Google Scholar 

  4. Lim JH, Park JW, Min DS, Chang JS, Lee YH, Park YB, Choi KS, Kwon TK (2007) NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis 12:411–421

    Article  PubMed  CAS  Google Scholar 

  5. Martinez JM, Sali T, Okazaki R, Anna C, Hollingshead M, Hose C, Monks A, Walker NJ, Baek SJ, Eling TE (2006) Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth. J Pharmacol Exp Ther 318:899–906

    Article  PubMed  CAS  Google Scholar 

  6. Shin DY, Kim GY, Li W, Choi BT, Kim ND, Kang HS, Choi YH (2009) Implication of intracellular ROS formation, caspase-3 activation and EGR-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomed Pharmacother 63:86–94

    Article  PubMed  CAS  Google Scholar 

  7. Baek SJ, Kim JS, Nixon JB, DiAugustine RP, Eling TE (2004) Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem 279:6883–6892

    Article  PubMed  CAS  Google Scholar 

  8. Jang TJ, Kang HJ, Kim JR, Yang CH (2004) Non-steroidal anti-inflammatory drug activated gene (NAG-1) expression is closely related to death receptor-4 and -5 induction, which may explain sulindac sulfide induced gastric cancer cell apoptosis. Carcinogenesis 25:1853–1858

    Article  PubMed  CAS  Google Scholar 

  9. Mahalingam D, Natoni A, Keane M, Samali A, Szegezdi E (2010) Early growth response-1 is a regulator of DR5-induced apoptosis in colon cancer cells. Br J Cancer 102:754–764

    Article  PubMed  CAS  Google Scholar 

  10. Huang RH, Chai J, Tarnawski AS (2006) Identification of specific genes and pathways involved in NSAIDs-induced apoptosis of human colon cancer cells. World J Gastroenterol 12:6446–6452

    PubMed  CAS  Google Scholar 

  11. Vaish V, Tanwar L, Sanyal SN (2010) The role of NF-kappaB and PPARgamma in experimentally induced colorectal cancer and chemoprevention by cyclooxygenase-2 inhibitors. Tumour Biol 31:427–436

    Article  PubMed  CAS  Google Scholar 

  12. Vaish V, Tanwar L, Kaur J, Sanyal SN (2011) Chemopreventive effects of non steroidal anti-inflammatory drugs in early neoplasm of experimental colorectal cancer: An apoptosome study. J Gastrointest Cancer 42:195–203

    Article  PubMed  CAS  Google Scholar 

  13. Vaish V, Sanyal SN (2011) Chemopreventive effects of NSAIDs on cytokines and transcription factors at the early stages of colorectal cancer. Pharmacol Rep 63:1210–1221

    PubMed  CAS  Google Scholar 

  14. Vaish V, Sanyal SN (2012) Role of Sulindac and Celecoxib in chemoprevention of colorectal cancer via intrinsic pathway of apoptosis: exploring NHE-1, intracellular calcium homeostasis and Calpain 9. Biomed Pharmacother 66:116–130

    Article  PubMed  CAS  Google Scholar 

  15. Brown WA, Skinner SA, Malcontenti-Wilson C, Vogiagis D, O’Brien PE (2001) Non-steroidal anti-inflammatory drugs with activity against either cyclooxygenase 1 or cyclooxygenase 2 inhibit colorectal cancer in a DMH rodent model by inducing apoptosis and inhibiting cell proliferation. Gut 48:660–666

    Article  PubMed  CAS  Google Scholar 

  16. Mouille B, Robert V, Blachier F (2004) Adaptive increase of ornithine production and decrease of ammonia metabolism in rat colonocytes and hyperproteic diet ingestion. Am J Physiol Gastrointest Liver Physiol 287:G344–G351

    Article  PubMed  CAS  Google Scholar 

  17. Vaish V, Sanyal SN (2011) Non steroidal anti-inflammatory drugs modulate the physicochemical properties of plasma membrane in experimental colorectal cancer: a fluorescence spectroscopic study. Mol Cell Biochem 358:161–171

    Article  PubMed  CAS  Google Scholar 

  18. Robinson JP, Bruner LH, Bassoe CF, Hudson JL, Ward PA, Phan SH (1988) Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J Leukoc Biol 43:304–310

    PubMed  CAS  Google Scholar 

  19. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77:990–994

    Article  PubMed  CAS  Google Scholar 

  20. Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD (2000) Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 46:126–138

    Article  PubMed  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  PubMed  CAS  Google Scholar 

  23. Sleebs BE, Czabotar PE, Fairbrother WJ, Fairlie WD, Flygare JA, Huang DC, Kersten WJ et al (2011) Quinazoline sulfonamides as dual binders of the proteins B-cell lymphoma 2 and B-cell lymphoma extra long with potent proapoptotic cell-based activity. J Med Chem 54:1914–1926

    Article  PubMed  CAS  Google Scholar 

  24. Piccagli L, Fabbri E, Borgatti M, Bezzerri V, Mancini I, Nicolis E, Dechecchi MC, Lampronti I, Cabrini G, Gambari R (2008) Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression. BMC Struct Biol 8:38

    Article  PubMed  Google Scholar 

  25. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  PubMed  CAS  Google Scholar 

  26. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196

    Article  PubMed  CAS  Google Scholar 

  27. Abdelrahim M, Baker CH, Abbruzzese JL, Safe S (2006) Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst 98:855–868

    Article  PubMed  CAS  Google Scholar 

  28. Abdelrahim M, Safe S (2005) Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 68:317–329

    PubMed  CAS  Google Scholar 

  29. Kaur J, Sanyal SN (2011) Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol Carcinog 50:707–718

    Article  PubMed  CAS  Google Scholar 

  30. Muthukkumar S, Nair P, Sells SF, Maddiwar NG, Jacob RJ, Rangnekar VM (1995) Role of EGR-1 in thapsigargin-inducible apoptosis in the melanoma cell line A375-C6. Mol Cell Biol 15:6262–6272

    PubMed  CAS  Google Scholar 

  31. Ahmed MM, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Wood DP Jr, Sells SF, Mohiuddin M, Rangnekar VM (1996) EGR-1 induction is required for maximal radiosensitivity in A375-C6 melanoma cells. J Biol Chem 271:29231–29237

    Article  PubMed  CAS  Google Scholar 

  32. Moon Y, Bottone FG Jr, McEntee MF, Eling TE (2005) Suppression of tumor cell invasion by cyclooxygenase inhibitors is mediated by thrombospondin-1 via the early growth response gene EGR-1. Mol Cancer Ther 4:1551–1558

    Article  PubMed  CAS  Google Scholar 

  33. Baek SJ, Wilson LC, Lee CH, Eling TE (2002) Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. J Pharmacol Exp Ther 301:1126–1131

    Article  PubMed  CAS  Google Scholar 

  34. Kim KS, Baek SJ, Flake GP, Loftin CD, Calvo BF, Eling TE (2002) Expression and regulation of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) in human and mouse tissue. Gastroenterology 122:1388–1398

    Article  PubMed  CAS  Google Scholar 

  35. Ciolino HP, Bass SE, MacDonald CJ, Cheng RY, Yeh GC (2008) Sulindac and its metabolites induce carcinogen metabolizing enzymes in human colon cancer cells. Int J Cancer 122:990–998

    Article  PubMed  CAS  Google Scholar 

  36. Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 34:434–442

    Article  PubMed  CAS  Google Scholar 

  37. Rigas B, Sun Y (2008) Induction of oxidative stress as a mechanism of action of chemopreventive agents against cancer. Br J Cancer 98:1157–1160

    Article  PubMed  CAS  Google Scholar 

  38. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 94:3064–3069

    Article  PubMed  CAS  Google Scholar 

  39. Salido M, Gonzalez JL, Vilches J (2007) Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells. Mol Cancer Ther 6:1292–1299

    Article  PubMed  CAS  Google Scholar 

  40. Pradelli LA, Bénéteau M, Ricci JE (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67:1589–1597

    Article  PubMed  CAS  Google Scholar 

  41. Karst AM, Li G (2007) BH3-only proteins in tumorigenesis and malignant melanoma. Cell Mol Life Sci 64:318–330

    Article  PubMed  CAS  Google Scholar 

  42. Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414–19419

    Article  PubMed  CAS  Google Scholar 

  43. Shimizu S, Konishi A, Kodama T, Tsujimoto Y (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 97:3100–3105

    Article  PubMed  CAS  Google Scholar 

  44. Sarkar FH, Rahman KM, Li Y (2003) Bax translocation to mitochondria is an important event in inducing apoptotic cell death by indole-3-carbinol (I3C) treatment of breast cancer cells. J Nutr 133:2434S–2439S

    PubMed  CAS  Google Scholar 

  45. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402

    Article  PubMed  CAS  Google Scholar 

  46. Allen RT, Cluck MW, Agrawal DK (1998) Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol Life Sci 54:427–445

    Article  PubMed  CAS  Google Scholar 

  47. Tsujimoto Y, Shimizu S (2000) VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174–1181

    Article  PubMed  CAS  Google Scholar 

  48. Madesh M, Hajnóczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  PubMed  CAS  Google Scholar 

  49. Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:1139–1146

    Article  PubMed  CAS  Google Scholar 

  50. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J 90:1546–1559

    Article  PubMed  CAS  Google Scholar 

  51. Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 102:17545–17550

    Article  PubMed  CAS  Google Scholar 

  52. Cecconi F, Gruss P (2001) Apaf1 in developmental apoptosis and cancer: how many ways to die? Cell Mol Life Sci 58:1688–1697

    Article  PubMed  CAS  Google Scholar 

  53. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T (2005) Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 280:857–860

    Article  PubMed  CAS  Google Scholar 

  54. Petermann E, Keil C, Oei SL (2005) Importance of poly(ADP-ribose) polymerases in the regulation of DNA-dependent processes. Cell Mol Life Sci 62:731–738

    Article  PubMed  CAS  Google Scholar 

  55. Diefenbach J, Bürkle A (2005) Introduction to poly(ADP-ribose) metabolism. Cell Mol Life Sci 62:721–730

    Article  PubMed  CAS  Google Scholar 

  56. Kim JW, Kim K, Kang K, Joe CO (2000) Inhibition of homodimerization of poly(ADP-ribose) polymerase by its C-terminal cleavage products produced during apoptosis. J Biol Chem 275:8121–8125

    Article  PubMed  CAS  Google Scholar 

  57. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    Article  PubMed  CAS  Google Scholar 

  58. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2003) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    Article  Google Scholar 

  59. Cocca BA, Cline AM, Radic MZ (2002) Blebs and apoptotic bodies are B cell autoantigens. J Immunol 169:159–166

    PubMed  CAS  Google Scholar 

  60. Andrade R, Crisol L, Prado R, Boyano MD, Arluzea J, Aréchaga J (2009) Plasma membrane and nuclear envelope integrity during the blebbing stage of apoptosis: a time-lapse study. Biol Cell 102:25–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Bhupinder Kaur, CSIC, PGIMER, Chandigarh for her help in acquiring FACS data. Financial assistance from the Department of Biotechnology, Govt. of India (BT/PR11516/MED/30/147/2008) is gratefully acknowledged. We are thankful to University Grants Commission (UGC), Govt. of India for providing fellowship to the research student, Mr. Vivek Vaish. We also acknowledge the contributions of Dr. Ravi Kumar, Application Specialist, Schrödinger, India for kind support in getting trial license for Schrödinger Suit 2011 and help in performing the docking studies.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Nath Sanyal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaish, V., Piplani, H., Rana, C. et al. NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem 378, 47–64 (2013). https://doi.org/10.1007/s11010-013-1593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1593-y

Keywords

Navigation