Skip to main content

Advertisement

Log in

Chemopreventive Effects of Non-steroidal Anti-inflammatory Drugs in Early Neoplasm of Experimental Colorectal Cancer: an Apoptosome Study

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Apoptosis is a highly regulated mechanism of cell death where pro-apoptotic proteins and caspases play an important role. Activation of pro-caspases at a definite time is essential to control the whole caspase cascade. Mitochondrion contains some pro-apoptotic proteins, which need to come out in cytoplasm for apoptotic function such as Cytochrome c (Cyt c), while the Bcl-2 protein family works as the guard of mitochondrial membrane and prevents the escape of Cyt c. Once Cyt c is out in cytoplasm, it binds with Apaf-1 (another pro-apoptotic protein also essential for proper cell differentiation) and pro-caspase-9, forming the Apoptosome complex. In this study, the role of two non-steroidal anti-inflammatory drugs (NSAIDs), Diclofenac and Celecoxib, in experimentally induced early neoplasm of colon via apoptosome mechanism had been studied. It has been recognized that the prolonged use of NSAIDs has its effect on reducing the risk of colorectal cancer through apoptotic pathways. However, the role of NSAIDs in respect of apoptosome is not clear.

Methods

Western blotting and immunohistochemistry were performed, along with morphological and histological analysis.

Results

According to the expression levels of Cytochrome c, Apaf-1, Caspases, and Bcl-2, it was observed that NSAIDs do follow the mitochondrial or intrinsic pathway of apoptosis.

Conclusion

The effects of Diclofenac and Celecoxib on the expression of pro- and anti-apoptotic proteins have been observed, which may constitute the mechanism by which the NSAIDs are efficient in controlling the proliferation of neoplasm in the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sinicrope FA, Roddey G, McDonnell TJ, Shen Y, Cleary KR, Stephens LC. Increased apoptosis accompanies neoplastic development in the human colorectum. Clin Cancer Res. 1996;2:1999–2006.

    PubMed  CAS  Google Scholar 

  2. Brown JR, DuBois RN. COX-2: A molecular target for colorectal cancer prevention. J Clin Oncol. 2005;23:2840–55. doi:10.1200/JCO.2005.09.051.

    Article  PubMed  CAS  Google Scholar 

  3. Thun MJ, Henley SJ, Patron C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002;94:252–66.

    PubMed  CAS  Google Scholar 

  4. Hwang DH, Fung V, Dannenberg AJ. National cancer institute workshop on chemopreventive properties of nonsteroidal anti-inflammatory drugs: Role of COX-dependent and -independent mechanisms. Neoplasia. 2002;4:91–7. doi:10.1038/sj/neo/7900226.

    Article  PubMed  Google Scholar 

  5. Ricchi P, Matola TD, Ruggiero G, et al. Effect of non-steroidal anti-inflammatory drugs on colon carcinoma Caco-2 cell responsiveness to topoisomerase inhibitor drugs. Br J Cancer. 2002;86:1501–9. doi:10.1038/sj/bjc/6600289.

    Article  PubMed  CAS  Google Scholar 

  6. Dubois RN, Abramson SB, Crofford L, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    PubMed  CAS  Google Scholar 

  7. Jana NR. NSAIDs and apoptosis. Cell Mol Life Sci. 2008;65:1295–301.

    Article  PubMed  CAS  Google Scholar 

  8. Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible Nitric Oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 2002;62:165–70.

    PubMed  CAS  Google Scholar 

  9. Kanwar SS, Vaipei K, Nehru B, Sanyal SN. Antioxidative effects of non-steroidal anti-inflammatory drugs during the initiation stages of experimental colon carcinogenesis in rat. J Environ Pathol Toxicol Oncol. 2008;27:89–100.

    PubMed  CAS  Google Scholar 

  10. Vaish V, Tanwar L, Sanyal SN (2010) The role of NF-kappaB and PPARgamma in experimentally induced colorectal cancer and chemoprevention by cyclooxygenase-2 inhibitors. Tumour Biol. 2010 Jun 1. [Epub ahead of print]. doi: 10.1007/s13277-010-0051-7.

  11. Hirose Y, Kuno T, Yamada Y, et al. Azoxymethane-induced beta-catenin-accumulated crypts in colonic mucosa of rodents as an intermediate biomarker for colon carcinogenesis. Carcinogenesis. 2003;24:107–11.

    Article  PubMed  CAS  Google Scholar 

  12. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  13. Ochiai M, Ushigome M, Fujiwara K, et al. Characterization of dysplastic aberrant crypt foci in the rat colon induced by 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine. Am J Pathol. 2003;163:1607–14.

    Article  PubMed  CAS  Google Scholar 

  14. Rodrigues MAM, Silva LAG, Salvadori DMF, de Camargo JLV, Montenegro MR. Aberrant crypt foci and colon cancer: comparison between a short- and medium-term bioassay for colon carcinogenesis using dimethylhydrazine in Wistar rats. Braz J Med Biol Res. 2002;35:351–5.

    PubMed  CAS  Google Scholar 

  15. Marsden VS, O’Connor L, O’Reilly LA, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419:634–7. doi:10.1038/nature01101.

    Article  PubMed  CAS  Google Scholar 

  16. Chipuk JE, Bouchier HL, Green DR. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 2006;13:1396–402. doi:10.1038/sj.cdd.4401963.

    Article  PubMed  CAS  Google Scholar 

  17. Oberst A, Bender C, Green DR. Living with death: The evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 2008;15:1139–46. doi:10.1038/cdd.2008.65.

    Article  PubMed  CAS  Google Scholar 

  18. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I. Bistability in Apoptosis: Roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J. 2006;90:1546–59. doi:10.1529/biophysj.105.068122.

    Article  PubMed  CAS  Google Scholar 

  19. Wang S, Yan NY, Cai R, Alimov I, Cohen D. Activation of mitochondrial pathway is crucial for tumor selective induction of apoptosis by LAQ824. Cell Cycle. 2006;5:1662–8.

    Article  PubMed  CAS  Google Scholar 

  20. Zou H, Li Y, Liu X, Wang X. An Apaf-1·Cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274:11549–56.

    Article  PubMed  CAS  Google Scholar 

  21. Ho AT, Zacksenhaus E. Splitting the Apoptosome. Cell Cycle. 2004;3:446–8.

    Article  PubMed  CAS  Google Scholar 

  22. Chu ZL, Pio F, Xie Z, Welsh K, Krajewska M, Krajewski S. A novel enhancer of the Apaf1 Apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. J Biol Chem. 2001;276:9239–45. doi:10.1074/jbc.M006309200.

    Article  PubMed  CAS  Google Scholar 

  23. Purring KC, McLendon G. Cytochrome c binding to Apaf-1: The effects of dATP and ionic strength. Proc Natl Acad Sci. 2000;97:11928–31.

    Article  Google Scholar 

  24. Johnson CE, Huang YY, Parrish AB, et al. Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc Natl Acad Sci. 2007;104:20820–5.

    Article  PubMed  CAS  Google Scholar 

  25. Cecconi F, Gruss P. Apaf1 in developmental apoptosis and cancer: how many ways to die? Cell Mol Life Sci. 2001;58:1688–97.

    Article  PubMed  CAS  Google Scholar 

  26. Saikumar P, Mikhailova M, Pandeswara SL. Regulation of caspase-9 activity by differential binding to the apoptosome complex. Front Biosci. 2007;12:3343–54.

    Article  PubMed  CAS  Google Scholar 

  27. Chinnaiyan AM. The Apoptosome: Heart and soul of the cell death machine. Neoplasia. 1999;1:5–15.

    Article  PubMed  CAS  Google Scholar 

  28. Hausmann G, O’Reilly LA, van Driel R, et al. Pro-apoptotic apoptosis protease–activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-xL. J Cell Biol. 2000;149:623–33.

    Article  PubMed  CAS  Google Scholar 

  29. Kim HE, Du F, Fang M, Wang X. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci. 2005;102:17545–50.

    Article  PubMed  CAS  Google Scholar 

  30. Bratton SB, Walker G, Srinivasula SM, Sun XM, et al. Recruitment, activation and retention of caspase-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 2001;20:998–1009.

    Article  PubMed  CAS  Google Scholar 

  31. Citterio S, Sgorbati S, Levi M, Colombo BM, Sparvoli E. PCNA and total nuclear protein content as markers of cell proliferation in pea tissue. J Cell Sci. 1992;102:71–8.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from the Department of Science and Technology, Govt. of India (SR/SO/BB-05/2008), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Nath Sanyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaish, V., Tanwar, L., Kaur, J. et al. Chemopreventive Effects of Non-steroidal Anti-inflammatory Drugs in Early Neoplasm of Experimental Colorectal Cancer: an Apoptosome Study. J Gastrointest Canc 42, 195–203 (2011). https://doi.org/10.1007/s12029-010-9188-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-010-9188-2

Keywords

Navigation