Skip to main content
Log in

Upregulation of NOX-2 and Nrf-2 Promotes 5-Fluorouracil Resistance of Human Colon Carcinoma (HCT-116) Cells

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Altered expression of cellular redox genes and proteins contributes to invasion, metastasis, and drug resistance in cancer. NADPH oxidase (NOX) isoforms are the pro-oxidant enzymes that generate ROS as a primary product. Dysregulation of NOX activity and expression alters ROS generation, which either directly or indirectly modulates cell death and survival signaling during the progression of cancer. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is an inducible transcription factor, which transcribes an array of antioxidant genes and protects cancer cells from the oxidative stress. Both NOXs and Nrf-2 participate in the regulation of cellular redox homeostasis; but their dysregulation promotes oxidative stress, which contributes to the progression of different types of cancer. Indeed, the role of NOX isoforms and Nrf-2 in developing the drug resistance in cancer is largely unknown. In the present study, we have explored the association of NOX isoforms and Nrf-2 signaling with the MDR1 gene expression in colon carcinoma cells (HCT-116/R). The MDR1 gene was overexpressed to develop resistant HCT-116/R cells and the NOX activation and ROS generation were monitored. We also assessed the role of NOX isoforms and Nrf-2 in the 5-fluorouracil (5-FU) mediated apoptotic cell death of HCT-116/R cells. The HCT-116/R cells demonstrated higher expression of HIF-1α, Nrf-2, and HO-1 and were highly resistant to 5-FU; they also displayed upregulated expression and activity of NOX-2, as well as elevated ROS levels. Interestingly, the treatment with HDC, a specific NOX-2 inhibitor, reduced the ROS levels in HCT-116/R cells. The treatment with HDC and ML-385 (specific inhibitor of Nrf-2) augmented the 5-FU-mediated apoptotic cell death of HCT-116/R cells, which suggests that NOX-2 and Nrf-2 are involved in the development of the chemoresistant phenotype of these cells. Taken together, NOX-2 and Nrf-2 are associated with developing drug resistance of colorectal cancer cells and might be potential targets to overcome drug resistance during cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

5-FU:

5-fluorouracil

ABC:

ATP-binding cassette

DPBS:

Dulbecco’s phosphate buffered saline

HCT-116/R:

MDR resistant colon cancer cells

NOX:

NADPH oxidase

Nrf-2:

nuclear factor erythroid 2-related factor 2

ROS:

reactive oxygen species

References

  1. Rawla, P., Sunkara, T., and Barsouk, A. (2019) Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors, Prz. Gastroenterol., 14, 89.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Beheshti, M. (2018) Different strategies to overcome multidrug resistance in cancer. Research review, Int. Pharm. Acta, 1, 88-89.

    Google Scholar 

  3. Longley, D., and Johnston, P. (2005) Molecular mechanisms of drug resistance, J. Pathol., 205, 275-292.

    Article  CAS  PubMed  Google Scholar 

  4. Tanguturi, P., Kim, K.-S., and Ramakrishna, S. (2020) The role of deubiquitinating enzymes in cancer drug resistance, Cancer Chemother. Pharmacol., 85, 627-639.

    Article  CAS  PubMed  Google Scholar 

  5. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., and Baradaran, B. (2017) The different mechanisms of cancer drug resistance: a brief review, Adv. Pharm. Bull., 7, 339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi, Y. H., and Yu, A. M. (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development, Curr. Pharm. Des., 20, 793-807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Locher, K. P., and Borths, E. (2004) ABC transporter architecture and mechanism: implications from the crystal structures of BtuCD and BtuF, FEBS Lett., 564, 264-268.

    Article  CAS  PubMed  Google Scholar 

  8. Holland, I. B. (2011) ABC transporters, mechanisms and biology: an overview, Essays Biochem., 50, 1-17.

    Article  CAS  PubMed  Google Scholar 

  9. Gottesman, M. M., and Pastan, I. H. (2015) The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene, J. Natl. Cancer Inst., 107, djv222, https://doi.org/10.1093/jnci/djv222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gottesman, M. M., Fojo, T., and Bates, S. E. (2002) Multidrug resistance in cancer: role of ATP-dependent transporters, Nat. Rev. Cancer, 2, 48-58.

    Article  CAS  PubMed  Google Scholar 

  11. Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., et al. (2019) ROS generation and antioxidant defense systems in normal and malignant cells, Oxid. Med. Cell. Longev., 2019, 6175804, https://doi.org/10.1155/2019/6175804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maryanovich, M., and Gross, A. (2013) A ROS rheostat for cell fate regulation, Trends Cell Biol., 23, 129-134.

    Article  CAS  PubMed  Google Scholar 

  13. Schieber, M., and Chandel, N. S. (2014) ROS function in redox signaling and oxidative stress, Curr. Biol., 24, R453-R462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crane, F., and Low, H. (2008) Reactive oxygen species generation at the plasma membrane for antibody control, Autoimmun. Rev., 7, 518-522.

    Article  CAS  PubMed  Google Scholar 

  15. Krause, K.-H. (2004) Tissue distribution and putative physiological function of NOX family NADPH oxidases, Jpn. J. Infect. Dis., 57, S28-S29.

    PubMed  Google Scholar 

  16. Weyemi, U., Redon, C. E., Parekh, P. R., Dupuy, C., and Bonner, W. M. (2013) NADPH oxidases NOXs and DUOXs as putative targets for cancer therapy, Anticancer Agents Med. Chem., 13, 502-514.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Juhasz, A., Markel, S., Gaur, S., Liu, H., Lu, J., et al. (2017) NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction, J. Biol. Chem., 292, 7866-7887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Banskota, S., Regmi, S. C., and Kim, J.-A. (2015) NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7, Mol. Cancer, 14, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jaramillo, M. C., and Zhang, D. D. (2013) The emerging role of the Nrf2–Keap1 signaling pathway in cancer, Genes Dev., 27, 2179-2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kessel, D., Beck, W. T., Kukuruga, D., and Schulz, V. (1991) Characterization of multidrug resistance by fluorescent dyes, Cancer Res., 51, 4665-4670.

    CAS  PubMed  Google Scholar 

  21. Shen, F., Chu, S., Bence, A. K., Bailey, B., Xue, X., et al. (2008) Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells, J. Pharmacol. Exp. Ther., 324, 95-102.

    Article  CAS  PubMed  Google Scholar 

  22. Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., et al. (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation, Biochem. J., 406, 105-114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waghela, B. N., Sharma, A., Dhumale, S., Pandey, S. M., and Pathak, C. (2015) Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells, PLoS One, 10, e0117526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vaidya, F. U., Sharma, R., Shaikh, S., Ray, D., Aswal, V. K., and Pathak, C. (2019) Pluronic micelles encapsulated curcumin manifests apoptotic cell death and inhibits pro-inflammatory cytokines in human breast adenocarcinoma cells, Cancer Rep., 2, e1133.

    Article  CAS  Google Scholar 

  25. Tonelli, C., Chio, I. I. C., and Tuveson, D. A. (2018) Transcriptional regulation by Nrf2, Antioxid. Redox Signal., 29, 1727-1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furfaro, A., Traverso, N., Domenicotti, C., Piras, S., Moretta, L., et al. (2016) The Nrf2/HO-1 axis in cancer cell growth and chemoresistance, Oxid. Med. Cell. Longev., 2016, 1958174, https://doi.org/10.1155/2016/1958174.

    Article  CAS  PubMed  Google Scholar 

  27. Aggarwal, V., Tuli, H. S., Varol, A., Thakral, F., Yerer, M. B., et al. (2019) Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements, Biomolecules, 9, 735.

    Article  CAS  PubMed Central  Google Scholar 

  28. Wang, X., Son, Y.-O., Chang, Q., Sun, L., Hitron, J. A., et al. (2011) NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium, Toxicol. Sci., 123, 399-410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Das, D., Preet, R., Mohapatra, P., Satapathy, S. R., Siddharth, S., et al. (2014) 5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of Adenomatous Polyposis Coli: implication of the long-patch base excision repair pathway, DNA Rep., 24, 15-25.

    Article  CAS  Google Scholar 

  30. Grem, J. L. (2000) 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development, Invest. New Drugs, 18, 299-313.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, N., Yin, Y., Xu, S.-J., and Chen, W.-S. (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies, Molecules, 13, 1551-1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pardini, B., Kumar, R., Naccarati, A., Novotny, J., Prasad, R. B., Forsti, A., et al. (2011) 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes, Br. J. Clin. Pharmacol., 72, 162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kovalev, A. A., Tsvetaeva, D. A., and Grudinskaja, T. V. (2013) Role of ABC-cassette transporters (MDR1, MRP1, BCRP) in the development of primary and acquired multiple drug resistance in patients with early and metastatic breast cancer, Exp. Oncol., 35, 287-290.

    CAS  PubMed  Google Scholar 

  34. Van der Jeught, K., Xu, H.-C., Li, Y.-J., Lu, X.-B., and Ji, G. (2018) Drug resistance and new therapies in colorectal cancer, World J. Gastroenterol., 24, 3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y., Li, Q., Zhou, L., Xie, N., Nice, E. C., et al. (2016) Cancer drug resistance: redox resetting renders a way, Oncotarget, 7, 42740.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kamata, T. (2009) Roles of Nox1 and other Nox isoforms in cancer development, Cancer Sci., 100, 1382-1388.

    Article  CAS  PubMed  Google Scholar 

  37. Adachi, Y., Shibai, Y., Mitsushita, J., Shang, W., Hirose, K., and Kamata, T. (2008) Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6, Oncogene, 27, 4921-4932.

    Article  CAS  PubMed  Google Scholar 

  38. Martner, A., Aydin, E., and Hellstrand, K. (2019) NOX2 in autoimmunity, tumor growth and metastasis, J. Pathol., 247, 151-154.

    Article  CAS  PubMed  Google Scholar 

  39. Taguchi, K., Motohashi, H., and Yamamoto, M. (2011) Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution, Genes Cells, 16, 123-140.

    Article  CAS  PubMed  Google Scholar 

  40. Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., et al. (2008) Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer, Gastroenterology, 135, 1358-1368.e1354.

    Article  CAS  PubMed  Google Scholar 

  41. Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., et al. (2003) NADPH oxidase activity is essential for Keap1/Nrf2-mediated induction of GCLC in response to 2-indol-3-yl-methylenequinuclidin-3-ols, Cancer Res., 63, 5636-5645.

    CAS  PubMed  Google Scholar 

  42. Wu, R. F., and Terada, L. S. (2009) Ras and Nox: linked signaling networks? Free Radic. Biol. Med., 47, 1276-1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laurent, E., McCoy, J. W. 3rd, Macina, R. A., Liu, W., Cheng, G., et al. (2008) Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras, Int. J. Cancer, 123, 100-107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tao, S., Wang, S., Moghaddam, S. J., Ooi, A., Chapman, E., et al. (2014) Oncogenic KRAS confers chemoresistance by upregulating NRF2, Cancer Res., 74, 7430-7441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kovac, S., Angelova, P. R., Holmström, K. M., Zhang, Y., Dinkova-Kostova, A. T., and Abramov, A. Y. (2015) Nrf2 regulates ROS production by mitochondria and NADPH oxidase, Biochim. Biophys. Acta, 1850, 794-801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, M., Zhang, T., Yang, L., Wang, Z., Ruan, J., and Chang, X. (2016) Association between NADPH oxidase (NOX) and lung cancer: a systematic review and meta-analysis, J. Thorac. Dis., 8, 1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parekh, A., Das, S., Parida, S., Das, C. K., Dutta, D., et al. (2018) Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo, Oncogene, 37, 4546-4561.

    Article  CAS  PubMed  Google Scholar 

  48. Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003) 5-Fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer, 3, 330-338.

    Article  CAS  PubMed  Google Scholar 

  49. He, L., Zhu, H., Zhou, S., Wu, T., Wu, H., et al. (2018) Wnt pathway is involved in 5-FU drug resistance of colorectal cancer cells, Exp. Mol. Med., 50, 1-12.

    Article  PubMed  CAS  Google Scholar 

  50. Kim, E.-K., Jang, M., Song, M.-J., Kim, D., Kim, Y., and Jang, H. H. (2019) Redox-mediated mechanism of chemoresistance in cancer cells, Antioxidants, 8, 471.

    Article  CAS  PubMed Central  Google Scholar 

  51. Kang, K., Piao, M., Kim, K., Kang, H., Chang, W., et al. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation, Cell Death Dis., 5, e1183-e1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Institute of Advanced Research, for providing the infrastructure and the research facility.

Funding

This study was supported by the SERB, Department of Science & Technology, New Delhi, Government of India (research grant EMR/2016/002574 to C. P.); ICMR, Gov of India (Senior Research fellowship to F. U. V.) and DST-INSPIRE (fellowship to B. N. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandramani Pathak.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with the involvement of humans or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghela, B.N., Vaidya, F.U. & Pathak, C. Upregulation of NOX-2 and Nrf-2 Promotes 5-Fluorouracil Resistance of Human Colon Carcinoma (HCT-116) Cells. Biochemistry Moscow 86, 262–274 (2021). https://doi.org/10.1134/S0006297921030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921030044

Keywords

Navigation