Skip to main content
Log in

Cu(Nor)2·5H2O, a complex of Cu(II) with Norfloxacin: theoretic approach and biological studies. Cytotoxicity and genotoxicity in cell cultures

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Norfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. In this article, we studied the potential antitumoral action of a complex of Norfloxacin with Cu(II), Cu(Nor)2·5H2O on osteosarcoma cells (UMR106) and calvaria-derived cells (MC3T3-E1), evaluating its cytotoxicity and genitoxicity. We have also elucidated the more stable conformation of this complex under physiologic conditions by Molecular Dynamic simulations based on the model of the canonical ensemble and PM6 force field. When solvent effect was taken into account, the complex conformation with both carbonyl groups in opposite sides displayed lower energy. Cu(Nor)2·5H2O caused an inhibitory effect on the proliferation on both cell lines from 300 μM (P < 0.01). Nevertheless, the decline on cell proliferation of UMR106 cells was more pronounced (45 % vs basal) than in MC3T3-E1 cells (20 % vs basal) at 300 μM (P < 0.01). Cu(Nor)2·5H2O altered lysosomal metabolism (Neutral Red assay) in a dose-dependent manner from 300 μM (P < 0.001). Morphological studies showed important transformations that correlated with a decrease in the number of cells in a dose-dependent manner. Moreover, Cu(Nor)2·5H2O caused statistically significant genotoxic effects on both osteoblast cell lines in a lower range of concentrations (Micronucleus assay) (P < 0.05 at 10 μM, P < 0.001 from 25 to 50 μM). UMR106 cells displayed a dose-related genotoxic effect between 5 and 25 μM while the MC3T3-E1 cells showed a narrower concentration dependent range. Altogether, these results suggest that Cu(Nor)2·5H2O is a good candidate to be further evaluated for alternative therapeutics in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Padeiskaia EN (2003) Norfloxacin: more than 20 years of clinical use, the results and place among fluoroquinolones in modern chemotherapy for infections. Antibiot Khimioter 48:28–36

    PubMed  CAS  Google Scholar 

  2. Anacona JR, Da Silva GJ (2005) Synthesis and antibacterial activity of cefotaxime metal complexes. J Chil Chem Soc 50:447–450

    CAS  Google Scholar 

  3. Williams DR (1971) The metals of life: the solution chemistry of metal ions in biological systems. Van Nostrand-Reinhold, London

    Google Scholar 

  4. Sorenson JRJ (1976) Copper chelates as possible active forms of the antiarthritic agents. J Med Chem 19:135–148

    Article  PubMed  CAS  Google Scholar 

  5. Brown DH, Lewis AE, Smith WE, Teape JW (1980) Antiinflammatory effects of some copper complexes. J Med Chem 23:729–734

    Article  PubMed  CAS  Google Scholar 

  6. Arayne S, Sultana N, Haroon U, Mesaik MA (2009) Synthesis, characterization, antibacterial and anti-inflammatory activities of enoxacin metal complexes. Bioinorg Chem Appl 2009:914105

    Article  Google Scholar 

  7. Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, De Carvalho M, Mesri EA, Robins DM, Dick RD, Brewer GJ, Merajver SD (2002) Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res 62:4854–4859

    PubMed  CAS  Google Scholar 

  8. Marzano C, Pellei M, Tisato F, Santini C (2009) Copper complexes as anticancer agents. Anticancer Agents Med Chem 9:185–211

    Article  PubMed  CAS  Google Scholar 

  9. Katsarou ME, Efthimiadou EK, Psomas G, Karaliota A, Vourloumis D (2008) Novel copper(II) complex of N-propyl-Norfloxacin and 1,10-phenanthroline with enhanced antileukemic and DNA nuclease activities. J Med Chem 51:470–478

    Article  PubMed  CAS  Google Scholar 

  10. King DE, Malone R, Lilley SH (2000) New classification and update on the Quinolone antibiotics. Am Fam Physician 61:2741–2748

    PubMed  CAS  Google Scholar 

  11. Turel I, Gruber K, Leban I, Bukovec N (1996) Synthesis, crystal structure, and characterization of three novel compounds of the Quinolone family member (Norfloxacin). J Inorg Biochem 61:197–212

    Google Scholar 

  12. Turel I, Leban I, Zupancic M, Bukovec P, Gruber K (1996) An adduct of magnesium sulfate with a member of the Quinolone family (Ciprofloxacin). Acta Crystallogr C 52:2443–2445

    Google Scholar 

  13. Turel I, Leban I, Klintschar G, Bukovec N, Zalar S (1997) Synthesis, crystal structure, and characterization of two metal-Quinolone compounds. J Inorg Biochem 66:77–82

    Article  PubMed  CAS  Google Scholar 

  14. Chen ZF, Xiong RJ, Zuo JL, Guo Z, You XZ, Fun KH (2000) X-Ray crystal structures of Mg2+ and Ca2+ dimers of the antibacterial drug Norfloxacin. J Chem Soc, Dalton Trans 22:4013–4014

    Article  Google Scholar 

  15. Al-Mustafa J (2002) Magnesium, calcium and barium percholate complexes of ciprofloxacin and Norfloxacin. Acta Chim Slov 49:457–466

    CAS  Google Scholar 

  16. Ruiz M, Perello L, Cario JS, Ortiz R, Granda SG, Diaz MR, Canton E (1998) Cinoxacin complexes with divalent metal ions. Spectroscopic characterization. Crystal structure of a new dinuclear Cd(II) complex having two chelate-bridging carboxylate groups.Antibacterial studies. J Inorg Biochem 69:231–239

    Article  PubMed  CAS  Google Scholar 

  17. Ruiz P, Ortiz R, Perello L, Alzuet G, Gonzalez-Alvarez M, Liu-Gonzalez M, Sanz-Ruiz F (2007) Synthesis, structure, and nuclease properties of several binary and ternary complexes of copper(II) with Norfloxacin and 1,10 phenantroline. J Inorg Biochem 101:831–840

    Article  PubMed  CAS  Google Scholar 

  18. Gao F, Yang P, Xie J, Wang H (1995) Synthesis, characterization and antibacterial activity of novel Fe(III), Co(II), and Zn(II) complexes with Norfloxacin. J Inorg Biochem 60:61–67

    Article  PubMed  CAS  Google Scholar 

  19. Sadeek SA, El-Shwiniy WH, Zordok WA, El-Didamony AM (2009) Synthesis, spectroscopic, thermal and biological activity investigation of new Y(III) and Pd(II) Norfloxacin complexes. J Argent Chem Soc 97:128–148

    CAS  Google Scholar 

  20. Ibrahim IT, Motaleb MA, Attalah K (2010) Synthesis and biological distribution of Tc-99m–Norfloxacin complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem 285:431–436

    Article  CAS  Google Scholar 

  21. Refat MS (2007) Synthesis and characterization of Norfloxacin-transition metal complexes (group 11, IB): spectroscopic, thermal, kinetic measurements and biological activity. Spectrochim Acta A 68:1393–1405

    Article  Google Scholar 

  22. Jimenez-Garrido N, Perello L, Ortiz R, Alzuet G, Gonzalez- Alvarez M, Canton E, Liu- Gonzalez M, Garcia-Granda S, Perez- Priede M (2005) Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two Quinolone family members, ciprofloxacin, and enoxacin. J Inorg Biochem 99:677–689

    Article  PubMed  CAS  Google Scholar 

  23. Drevensek P, Turel I, Ulrih NP (20039 Influence of copper(II) and magnesium(II) ions on the ciprofloxacin binding to DNA. J Inorg Biochem 96:407–415

    Google Scholar 

  24. Song GW, He Y, Cai ZX (2004) The interaction between levofloxacine hydrochloride and DNA mediated by Cu2+. J Fluoresc 14:705–710

    Article  PubMed  CAS  Google Scholar 

  25. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  PubMed  CAS  Google Scholar 

  26. Chongcharoen W, Byrn SR, Sutanthavibul N (2008) Solid state interconversion between anhydrous Norfloxacin and its hydrates. J Pharm Sci 97:473–489

    Article  PubMed  CAS  Google Scholar 

  27. Refat MS (2007) Synthesis and characterization of Norfloxacin-transition metal complexes (group 11, IB): spectroscopic, thermal, kinetic measurements and biological activity. Spectrochimica Acta A 68:1393–1405

    Article  Google Scholar 

  28. Barrio DA, Etcheverry SB (2006) Vanadium and bone development: putative signaling pathways. Can J Physiol Pharmacol 84:677–686

    Article  PubMed  CAS  Google Scholar 

  29. Okajima T, Nakamura K, Zhang H, Ling N, Tanabe T, Yasuda T, Rosenfeld RG (1992) Sensitive colorimetric bioassays for insulin-like growth factor (IGF) stimulation of cell proliferation and glucose consumption: use in studies of IGF analogs. Endocrinology 130:2201–2212

    Article  PubMed  CAS  Google Scholar 

  30. Cortizo AM, Bruzzone L, Molinuevo MS, Etcheverry SB (2000) A possible role of oxidative stress in the vanadiuminduced cytotoxicity in the MC3T3-E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147:89–99

    Article  PubMed  CAS  Google Scholar 

  31. Etcheverry SB, Ferrer EG, Naso L, Barrio DA, Lezama L, Rojo T, Williams PAM (2007) Losartan and its interaction with copper(II): biological effects. Bioorg Med Chem 15:6418–6424

    Article  PubMed  CAS  Google Scholar 

  32. Borenfreund E, Puerner JA (1984) A simple quantitative procedure using monolayer culture for toxicity assays. J Tissue Cult Methods 9:7–9

    Article  Google Scholar 

  33. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  PubMed  CAS  Google Scholar 

  34. Stopper H, Muller SO (1997) Micronuclei as a biological endpoint for genotoxicity: a minireview. Toxicol In Vitro 11:661–667

    Article  PubMed  CAS  Google Scholar 

  35. Castillo-Blum SE, Barba-Behrens N (2000) Coordination chemistry of some biologically active ligands. Coord Chem Rev 196:3–30

    Article  CAS  Google Scholar 

  36. Turel I (2002) The interaction of metal ions with Quinolone antibacterial agents. Coord Chem Rev 232:27–47

    Article  CAS  Google Scholar 

  37. Macías B, Villa MV, Rubio I, Castiñeiras A, Borrás J (2001) Complexes of Ni(II) and Cu(II) with Nofloxacin. Crystal structure of a new Cu(II) Nofloxacin complex. J Inorg Biochem 84:163–170

    Article  PubMed  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Wang X (2010) Fresh platinum complexes with promising antitumor activity. Anticancer Agents Med Chem 10:396–411

    Article  PubMed  CAS  Google Scholar 

  41. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP (2010) Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 16:1813–1825

    Article  PubMed  CAS  Google Scholar 

  42. Tardito S, Marchio L (2009) Copper compounds in anticancer strategies. Curr Med Chem 16:1325–1348

    Article  PubMed  CAS  Google Scholar 

  43. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30:708–749

    PubMed  CAS  Google Scholar 

  44. Harris AL, Hochhauser D (1992) Mechanisms of multidrug resistance in cancer treatment. Acta Oncol 31:205–213

    Article  PubMed  CAS  Google Scholar 

  45. Shingnapurkar D, Butcher R, Afrasiabi Z, Sinn E, Ahmed F, Sarkar F, Padhy S (2007) Neutral dimeric copper–sparfloxacin conjugate having butterfly motif with antiproliferative effects against hormone independent BT20 breast cancer cell line. Inorg Chem Commun 10:459–462

    Article  CAS  Google Scholar 

  46. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  PubMed  CAS  Google Scholar 

  47. Ivanova L, Uhlig S (2008) A bioassay for the simultaneous measurement of metabolic activity, membrane integrity, and lysosomal activity in cell cultures. Anal Biochem 379:16–19

    Article  PubMed  CAS  Google Scholar 

  48. Buchtik R, Travnicek Z, Vanco J, Herchel R, Dvorak Z (2011) Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(II) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)-quinolinone. Dalton Trans 40:9404–9412

    Article  PubMed  CAS  Google Scholar 

  49. OECD Guideline http://www.oecd.org/document/35/0,3746,en_2649_34377_45773411_1_1_1_1,00.html

  50. Coughlin SA, Danz DW, Robinson RG, Klingbeil KM, Wentland MP, Corbett TH, Waud WR, Zwelling LA, Altschuler E, Bales E, Rake JB (1995) Mechanism of action and antitumor activity of (S)-10-(2,6-dimethyl-4-pyridinyl)-9-fluoro-3-methyl-7-oxo-2,3-dihydro-7Hpyridol[1,2,3-de] [1,4] benzothiazine -6-carboxylic acid. Biochem Pharm 50:111–122

    Article  PubMed  CAS  Google Scholar 

  51. Clement JJ, Burres N, Jarvis K, Chu DT, Swiniarski J, Alder J (1995) Biological characterization of a novel antitumor Quinolone. Cancer Res 55:830–835

    PubMed  CAS  Google Scholar 

  52. da Silveira VC, Benezra H, Luz JS, Georg RC, Oliveira CC, Ferreira AM (2011) Binding of oxindole-Schiff base copper(II) complexes to DNA and its modulation by the ligand. J Inorg Biochem 105:1692–1703

    Article  PubMed  Google Scholar 

  53. Lee WY, Yan YK, Lee PP, Tan SJ, Lim KH (2012) DNA binding and nucleolytic properties of Cu(II) complexes of salicylaldehyde semicarbazones. Metallomics 4:188–196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by UNLP (11X/554), CONICET (PIP 1125), ANPCyT (PICT 2218 and PICT-2010-0981). The authors would like to thank MINCYT (CO/08/07) from Argentina, and UdeA and COLCIENCIAS from Colombia, for mobility funding. ALDV and SBE are members of the Carrera del Investigador, CONICET, Argentina. IEL is a fellowship from ANPCyT, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Etcheverry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Virgilio, A.L., León, I.E., Franca, C.A. et al. Cu(Nor)2·5H2O, a complex of Cu(II) with Norfloxacin: theoretic approach and biological studies. Cytotoxicity and genotoxicity in cell cultures. Mol Cell Biochem 376, 53–61 (2013). https://doi.org/10.1007/s11010-012-1548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1548-8

Keywords

Navigation