Skip to main content
Log in

Arachidonic acid pools of rat kidney cell nuclei

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have assessed that nuclear lipids from rat kidney cells are not only membrane components, but they are also found within the nucleus. The most abundant nuclear and endonuclear lipids have a high proportion of unsaturated fatty acids (n-6 series: arachidonic > linoleic), mainly esterified to PtdCho. Nuclear most abundant molecular species are 16:0–20:4, 16:0–18:2, 18:0–20:4, 18:0–18:2, and 16:0–18:1. Arachidonic acid is esterified at the sn-2 position of PtdCho: 16:0–20:4(25%), 18:0–20:4(15%), 18:2–20:4(3%), 18:1–20:4(2%). Exogenous [1-14C]20:4n-6-CoA is esterified in vitro in GP (glycerophospholipids) > > TAG and DAG. Five PtdCho molecular species were labeled: 16:0–20:4, 18:0–20:4, 18:1–20:4, 18:2–20:4, and 20:4–20:4. In conclusion, these results demonstrated that: (1) there is an important lipid pool within kidney cell nuclei; (2) main nuclear and endonuclear lipid pools were PtdCho molecular species which contained a high proportion of unsaturated fatty acids (20:4n-6 and 18:2n-6) esterified at sn-2 position and 16:0 esterified at sn-1 position; (3) kidney cell nuclei also contained the necessary enzymes to esterify exogenous 20:4n-6-CoA to glycerolipids and to GP; (4) exogenous 20:4n-6-CoA was esterified in five PtdCho molecular species with 20:4n-6 at the sn-2 position, although the most actively synthesized PtdCho contained 20:4n-6 at both the sn-1 and sn-2 positions of the molecule; (5) we can infer that by a remodeling process, the unsaturated fatty acids at the sn-1 position of PtdCho molecular species could be replaced by 16:0 and 18:0, and thus PtdCho would achieve the physiological profile characteristic of the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  PubMed  CAS  Google Scholar 

  2. Mate SM, Brenner RR, Ves-Losada A (2006) Endonuclear lipids in liver cells. Can J Physiol Pharmacol 84:459–468

    Article  PubMed  CAS  Google Scholar 

  3. Albi E, Mersel M, Leray C, Tomassoni ML, Viola-Magni MP (1994) Rat liver chromatin phospholipids. Lipids 29:715–719

    Article  PubMed  CAS  Google Scholar 

  4. Hunt AN, Clark GT, Attard GS, Postle AD (2001) Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J Biol Chem 276:8492–8499

    Article  PubMed  CAS  Google Scholar 

  5. Antony P, Kanfer JN, Freysz L (2000) Phosphatidylcholine metabolism in nuclei of phorbol ester-activated LA-N-1 neuroblastoma cells. Neurochem Res 25:1073–1082

    Article  PubMed  CAS  Google Scholar 

  6. Clement JM, Kent C (1999) CTP:phosphocholine cytidylyltransferase: insights into regulatory mechanisms and novel functions. Biochem Biophys Res Commun 257:643–650

    Article  PubMed  CAS  Google Scholar 

  7. Dygas A, Przybylek K, Meljon A, Baranska J (2000) Serine base-exchange in rat liver nuclei. FEBS Lett 482:205–208

    Article  PubMed  CAS  Google Scholar 

  8. Mate SM, Brenner RR, Ves-Losada A (2004) Phosphatidyl choline fatty acid remodeling in the hepatic cell nuclei. Prostaglandins Leukot Essent Fatty Acids 70:49–57

    Article  PubMed  CAS  Google Scholar 

  9. Ves-Losada A, Mate SM, Brenner RR (2001) Incorporation and distribution of saturated and unsaturated fatty acids into nuclear lipids of hepatic cells. Lipids 36:273–282

    Article  PubMed  CAS  Google Scholar 

  10. Mate SM, Layerenza JP, Ves-Losada A (2007) Incorporation of arachidonic and stearic acids bound to L-FABP into nuclear and endonuclear lipids from rat liver cells. Lipids 42:589–602

    Article  PubMed  CAS  Google Scholar 

  11. Ves-Losada A, Brenner RR (1996) Long-chain fatty Acyl-CoA synthetase enzymatic activity in rat liver cell nuclei. Mol Cell Biochem 159:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Ves-Losada A, Brenner RR (1995) Fatty acid delta 5 desaturation in rat liver cell nuclei. Mol Cell Biochem 142:163–170

    Article  PubMed  CAS  Google Scholar 

  13. Ves-Losada A, Brenner RR (1998) Incorporation of delta 5 desaturase substrate (dihomogammalinolenic acid, 20:3 n-6) and product (arachidonic acid 20:4 n-6) into rat liver cell nuclei. Prostaglandins Leukot Essent Fatty Acids 59:39–47

    Article  PubMed  CAS  Google Scholar 

  14. Suozzi A, Malatesta M, Zancanaro C (2009) Subcellular distribution of key enzymes of lipid metabolism during the euthermia-hibernation-arousal cycle. J Anat 214:956–962

    Article  PubMed  CAS  Google Scholar 

  15. Capriotti AM, Furth EE, Arrasmith ME, Laposata M (1988) Arachidonate released upon agonist stimulation preferentially originates from arachidonate most recently incorporated into nuclear membrane phospholipids. J Biol Chem 263:10029–10034

    PubMed  CAS  Google Scholar 

  16. Farooqui AA, Horrocks LA (2005) Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev 45:613–631

    Article  PubMed  CAS  Google Scholar 

  17. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  PubMed  CAS  Google Scholar 

  18. Monjazeb AM, Clay CE, High KP, Chilton FH (2002) Antineoplastic properties of arachidonic acid and its metabolites. Prostaglandins Leukot Essent Fatty Acids 66:5–12

    Article  PubMed  CAS  Google Scholar 

  19. Leaver HA, Rizzo MT, Whittle IR (2002) Antitumour actions of highly unsaturated fatty acids: cell signalling and apoptosis. Prostaglandins Leukot Essent Fatty Acids 66:1–3

    Article  PubMed  CAS  Google Scholar 

  20. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  PubMed  CAS  Google Scholar 

  21. Hao CM, Breyer MD (2008) Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol 70:357–377

    Article  PubMed  CAS  Google Scholar 

  22. Currie MG, Needleman P (1984) Renal arachidonic acid metabolism. Annu Rev Physiol 46:327–341

    Article  PubMed  CAS  Google Scholar 

  23. Sterin-Speziale N, Kahane VL, Setton CP, Fernandez MC, Speziale EH (1992) Compartmental study of rat renal phospholipid metabolism. Lipids 27:10–14

    Article  PubMed  CAS  Google Scholar 

  24. Yamazaki T, Hirose A, Sakamoto T, Okazaki M, Mitsumoto A, Kudo N, Kawashima Y (2009) Peroxisome proliferators attenuate free arachidonic acid pool in the kidney through inducing lysophospholipid acyltransferases. J Pharmacol Sci 111:201–210

    Article  PubMed  CAS  Google Scholar 

  25. Hicks AM, DeLong CJ, Thomas MJ, Samuel M, Cui Z (2006) Unique molecular signatures of glycerophospholipid species in different rat tissues analyzed by tandem mass spectrometry. Biochim Biophys Acta 1761:1022–1029

    PubMed  CAS  Google Scholar 

  26. Irazu CE, Gonzalez-Rodriguez S, Brenner RR (1993) Delta 5 desaturase activity in rat kidney microsomes. Mol Cell Biochem 129:31–37

    Article  PubMed  CAS  Google Scholar 

  27. Actis Dato SM, Catala A, Brenner RR (1973) Circadian rhythm of fatty acid desaturation in mouse liver. Lipids 8:1–6

    Article  PubMed  CAS  Google Scholar 

  28. Blobel G, Potter VR (1966) Nuclei from rat liver: isolation method that combines purity with high yield. Science 154:1662–1665

    Article  PubMed  CAS  Google Scholar 

  29. Kasper CB (1974) Isolation and properties of the nuclear envelope. Methods Enzymol 31:279–292

    Article  PubMed  CAS  Google Scholar 

  30. Hogeboom GH (1955) Fractionation of cell components of animal tissues. Methods Enzymol 1:16–18

    Article  CAS  Google Scholar 

  31. Ves-Losada A, Peluffo RO (1987) Effect of cold environment on hepatic microsomal delta 6 and delta 9 desaturase activity of male rats. Lipids 22:583–588

    Article  PubMed  CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr al, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  33. Vann LR, Wooding FB, Irvine RF, Divecha N (1997) Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem J 327(Pt 2):569–576

    PubMed  CAS  Google Scholar 

  34. Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352

    Article  PubMed  CAS  Google Scholar 

  35. Yusenko MV, Ruppert T, Kovacs G (2010) Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis. Int J Biol Sci 6:213–224

    PubMed  CAS  Google Scholar 

  36. Sabolic I, Herak-Kramberger CM, Breton S, Brown D (1999) Na/K-ATPase in intercalated cells along the rat nephron revealed by antigen retrieval. J Am Soc Nephrol 10:913–922

    PubMed  CAS  Google Scholar 

  37. Tao X, Jihong Y, Li G, Bin F, Yi Z, Xiaodong C, Peichao Z, Yang Z (2008) Cloning, chromosome mapping and expression pattern of porcine PLIN and M6PRBP1 genes. Genet Sel Evol 40:215–226

    PubMed  Google Scholar 

  38. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  39. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  40. Sikstrom R, Lanoix J, Bergeron JJ (1976) An enzymic analysis of a nuclear envelope fraction. Biochim Biophys Acta 448:88–102

    Article  PubMed  CAS  Google Scholar 

  41. Franke WW, Scheer U, Krohne G, Jarasch ED (1981) The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol 91:39s–50s

    Article  PubMed  CAS  Google Scholar 

  42. Arion WJ, Schulz LO, Lange AJ, Telford JN, Walls HE (1983) The characteristics of liver glucose-6-phosphatase in the envelope of isolated nuclei and microsomes are identical. J Biol Chem 258:12661–12669

    PubMed  CAS  Google Scholar 

  43. Schmid PC, Spimrova I, Schmid HH (1995) Incorporation of exogenous fatty acids into molecular species of rat hepatocyte phosphatidylcholine. Arch Biochem Biophys 322:306–312

    Article  PubMed  CAS  Google Scholar 

  44. Waku K (1992) Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta 1124:101–111

    PubMed  CAS  Google Scholar 

  45. Chi Y, Gupta RK (1998) Alterations in heart and kidney membrane phospholipids in hypertension as observed by 31P nuclear magnetic resonance. Lipids 33:1023–1030

    Article  PubMed  CAS  Google Scholar 

  46. D’Antuono C, Fernandez-Tome MC, Sterin-Speziale N, Bernik DL (2000) Lipid-protein interactions in rat renal subcellular membranes: a biophysical and biochemical study. Arch Biochem Biophys 382:39–47

    Article  PubMed  CAS  Google Scholar 

  47. Albi E, Cataldi S, Rossi G, Magni MV (2003) A possible role of cholesterol-sphingomyelin/phosphatidylcholine in nuclear matrix during rat liver regeneration. J Hepatol 38:623–628

    Article  PubMed  CAS  Google Scholar 

  48. Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360

    Article  PubMed  CAS  Google Scholar 

  49. Liu J, Takano T, Papillon J, Khadir A, Cybulsky AV (2001) Cytosolic phospholipase A2-alpha associates with plasma membrane, endoplasmic reticulum and nuclear membrane in glomerular epithelial cells. Biochem J 353:79–90

    Article  PubMed  CAS  Google Scholar 

  50. D’Santos CS, Clarke JH, Irvine RF, Divecha N (1999) Nuclei contain two differentially regulated pools of diacylglycerol. Curr Biol 9:437–440

    Article  PubMed  Google Scholar 

  51. Divecha N, Lander DJ, Scott TW, Irvine RF (1991) Molecular species analysis of 1, 2-diacylglycerols and phosphatidic acid formed during bombesin stimulation of Swiss 3T3 cells. Biochim Biophys Acta 1093:184–188

    Article  PubMed  CAS  Google Scholar 

  52. Hunt AN, Clark GT, Neale JR, Postle AD (2002) A comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis. FEBS Lett 530:89–93

    Article  PubMed  CAS  Google Scholar 

  53. Jarpe MB, Leach KL, Raben DM (1994) Alpha-thrombin-induced nuclear sn-1, 2-diacylglycerols are derived from phosphatidylcholine hydrolysis in cultured fibroblasts. Biochemistry 33:526–534

    Article  PubMed  CAS  Google Scholar 

  54. Parfenova H, Parfenov VN, Shlopov BV, Levine V, Falkos S, Pourcyrous M, Leffler CW (2001) Dynamics of nuclear localization sites for COX-2 in vascular endothelial cells. Am J Physiol Cell Physiol 281:C166–C178

    PubMed  CAS  Google Scholar 

  55. Marra CA, de Alaniz MJ (1992) Incorporation and metabolic conversion of saturated and unsaturated fatty acids in SK-Hep1 human hepatoma cells in culture. Mol Cell Biochem 117:107–118

    Article  PubMed  CAS  Google Scholar 

  56. Albino L, Polo MP, de Bravo MG, de Alaniz MJ (2001) Uptake and metabolic conversion of saturated and unsaturated fatty acids in Hep2 human larynx tumor cells. Prostaglandins Leukot Essent Fatty Acids 65:295–300

    Article  PubMed  CAS  Google Scholar 

  57. Choi Y, Park Y, Storkson JM, Pariza MW, Ntambi JM (2002) Inhibition of stearoyl-CoA desaturase activity by the cis-9, trans-11 isomer and the trans-10, cis-12 isomer of conjugated linoleic acid in MDA-MB-231 and MCF-7 human breast cancer cells. Biochem Biophys Res Commun 294:785–790

    Article  PubMed  CAS  Google Scholar 

  58. Pawar A, Jump DB (2003) Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes. J Biol Chem 278:35931–35939

    Article  PubMed  CAS  Google Scholar 

  59. Suneja SK, Nagi MN, Cook L, Osei P, Cinti DL (1991) Do rat kidney cortex microsomes possess the enzymatic machinery to desaturate and chain elongate fatty acyl-CoA derivatives? Lipids 26:359–363

    Article  PubMed  CAS  Google Scholar 

  60. Lefkowith JB, Flippo V, Sprecher H, Needleman P (1985) Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency. J Biol Chem 260:15736–15744

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the following grants: Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de La Plata (UNLP), and Agencia de Promoción Científica y Tecnológica (ANPCyT) from Argentina. The authors are grateful to Norma Tedesco for her secretarial assistance, and to Martín Sebastián Sisti, undergraduate student from Facultad de Ciencias Exactas, UNLP for his technical assistance. The authors thank Prof. S. Demichelis, Statistical Advisor for the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ves-Losada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maté, S.M., Layerenza, J.P. & Ves-Losada, A. Arachidonic acid pools of rat kidney cell nuclei. Mol Cell Biochem 345, 259–270 (2010). https://doi.org/10.1007/s11010-010-0580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0580-9

Keywords

Navigation