Skip to main content
Log in

Receptor guanylyl cyclases in mammalian olfactory function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Mice expressing reporters such as β-galactosidase and green fluorescent protein in OSNs that normally express GC-D have allowed investigators to identify these neurons in situ, facilitating anatomical and physiological studies of this sparse neuronal population. The specific perturbation of GC-D function in vivo has helped to resolve the role of this guanylyl cyclase in the transduction of olfactory stimuli. Similar approaches could be useful for the study of the orphan receptor GC-G, which is expressed in another distinct subpopulation of sensory neurons located in the Grueneberg ganglion. In this review, we discuss key findings that have reinvigorated the study of guanylyl cyclase function in the olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575

    Article  CAS  PubMed  Google Scholar 

  2. Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  CAS  PubMed  Google Scholar 

  3. Ma M (2007) Encoding olfactory signals via multiple chemosensory systems. Crit Rev Biochem Mol Biol 42:463–480

    Article  CAS  PubMed  Google Scholar 

  4. Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  CAS  PubMed  Google Scholar 

  5. Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci U S A 94:3388–3395

    Article  CAS  PubMed  Google Scholar 

  6. Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci U S A 97:10595–10600

    Article  CAS  PubMed  Google Scholar 

  7. Zufall F, Firestein S, Shepherd GM (1994) Cyclic nucleotide-gated ion channels and sensory transduction in olfactory receptor neurons. Annu Rev Biophys Biomol Struct 23:577–607

    Article  CAS  PubMed  Google Scholar 

  8. Breer H, Shepherd GM (1993) Implications of the NO/cGMP system for olfaction. Trends Neurosci 16:5–9

    Article  CAS  PubMed  Google Scholar 

  9. Ronnett GV, Snyder SH (1992) Molecular messengers of olfaction. Trends Neurosci 15:508–513

    Article  CAS  PubMed  Google Scholar 

  10. Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481

    Article  CAS  PubMed  Google Scholar 

  11. Zufall F, Leinders-Zufall T (1998) Role of cyclic GMP in olfactory transduction and adaptation. Ann NY Acad Sci 855:199–204

    Article  CAS  PubMed  Google Scholar 

  12. Moon C, Simpson PJ, Tu Y, Cho H, Ronnett GV (2005) Regulation of intracellular cyclic GMP levels in olfactory sensory neurons. J Neurochem 95:200–209

    Article  CAS  PubMed  Google Scholar 

  13. Moon C, Jaberi P, Otto-Bruc A, Baehr W, Palczewski K, Ronnett GV (1998) Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons. J Neurosci 18:3195–3205

    CAS  PubMed  Google Scholar 

  14. Gibson AD, Garbers DL (2000) Guanylyl cyclases as a family of putative odorant receptors. Annu Rev Neurosci 23:417–439

    Article  CAS  PubMed  Google Scholar 

  15. Kuhn M (2009) Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 47–69

  16. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    Article  CAS  PubMed  Google Scholar 

  17. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957

    Article  CAS  PubMed  Google Scholar 

  18. Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063–4072

    Article  CAS  PubMed  Google Scholar 

  19. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  CAS  PubMed  Google Scholar 

  20. Baker H, Cummings DM, Munger SD, Margolis JW, Franzen L, Reed RR, Margolis FL (1999) Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): biochemical and morphological consequences in adult mice. J Neurosci 19:9313–9321

    CAS  PubMed  Google Scholar 

  21. Fain GL (2003) Sensory transduction. Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  22. Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    Article  CAS  PubMed  Google Scholar 

  23. Youngentob SL, Hornung DE, Mozell MM (1991) Determination of carbon dioxide detection thresholds in trained rats. Physiol Behav 49:21–26

    Article  CAS  PubMed  Google Scholar 

  24. Ferris KE, Clark RD, Coates EL (2007) Topical inhibition of nasal carbonic anhydrase affects the CO2 detection threshold in rats. Chem Senses 32:263–271

    Google Scholar 

  25. Cockerham RE, Margolis FL, Munger SD (2009) Afferent activity to necklace glomeruli is dependent on external stimuli. BMC Res Notes 2:31

    Google Scholar 

  26. Cockerham RE, Puche AC, Munger SD (2009) Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli. PLoS ONE 4:e4657

    Article  PubMed  Google Scholar 

  27. Palczewski K, Sokal I, Baehr W (2004) Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 322:1123–1130

    Article  CAS  PubMed  Google Scholar 

  28. Mammen A, Simpson PJ, Nighorn A, Imanishi Y, Palczewski K, Ronnett GV, Moon C (2004) Hippocalcin in the olfactory epithelium: a mediator of second messenger signaling. Biochem Biophys Res Commun 322:1131–1139

    Article  PubMed  Google Scholar 

  29. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan A, Sharma RK (2004) Calcium-modulated ciliary membrane guanylate cyclase transduction machinery: constitution and operational principles. Mol Cell Biochem 267:107–122

    Article  CAS  PubMed  Google Scholar 

  30. Duda T, Krishnan R, Sharma RK (2006) GCAP1: Anti-thetical calcium sensor of ROS-GC transduction machinery. Calcium Binding Proteins 1:102–107

    Google Scholar 

  31. Krishnan A, Duda T, Pertzev A, Kobayashi M, Takamatsu K, Sharma RK (2009) Hippocalcin, new Ca(2+) sensor of a ROS-GC subfamily member, ONE-GC, membrane guanylate cyclase transduction system. Mol Cell Biochem 325:1–14

    Google Scholar 

  32. Duda T, Sharma RK (2009) Ca2+-modulated ONE-GC odorant signal transduction. FEBS Lett 583:1327–1330

    Article  CAS  PubMed  Google Scholar 

  33. Duda T, Jankowska A, Venkataraman V, Nagele RG, Sharma RK (2001) A novel calcium-regulated membrane guanylate cyclase transduction system in the olfactory neuroepithelium. Biochemistry 40:12067–12077

    Article  CAS  PubMed  Google Scholar 

  34. Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci U S A 106:2041–2046

    Article  CAS  PubMed  Google Scholar 

  35. Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422

    Article  CAS  PubMed  Google Scholar 

  36. Fleischer J, Mamasuew K, Breer H (2009) Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 131:75–88

    Article  CAS  PubMed  Google Scholar 

  37. Liu CY, Fraser SE, Koos DS (2009) Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 516:36–48

    Article  CAS  PubMed  Google Scholar 

  38. Gruneberg H (1973) A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 140:39–52

    Article  CAS  PubMed  Google Scholar 

  39. Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H (2006) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125:337–349

    Article  CAS  PubMed  Google Scholar 

  40. Storan MJ, Key B (2006) Septal organ of Gruneberg is part of the olfactory system. J Comp Neurol 494:834–844

    Article  PubMed  Google Scholar 

  41. Roppolo D, Ribaud V, Jungo VP, Luscher C, Rodriguez I (2006) Projection of the Gruneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 23:2887–2894

    Article  PubMed  Google Scholar 

  42. Koos DS, Fraser SE (2005) The Grueneberg ganglion projects to the olfactory bulb. Neuroreport 16:1929–1932

    Article  PubMed  Google Scholar 

  43. Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 22:2649–2654

    Article  PubMed  Google Scholar 

  44. Brechbuhl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  45. Mamasuew K, Breer H, Fleischer J (2008) Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci 28:1775–1785

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research conducted in the authors’ laboratories is supported by the National Institute on Deafness and Other Communication Disorders (DC005633 to SDM) and by the Deutsche Forschungsgemeinschaft (SFB 530/A7 to FZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Zufall or Steven D. Munger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zufall, F., Munger, S.D. Receptor guanylyl cyclases in mammalian olfactory function. Mol Cell Biochem 334, 191–197 (2010). https://doi.org/10.1007/s11010-009-0325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0325-9

Keywords

Navigation