Skip to main content
Log in

Role of Neurotransmitters in the Functioning of Olfactory Sensory Neurons

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review article addresses the literature data, from which it follows that olfactory sensory neurons (OSN) combine the properties typical for olfactory receptor cells designed to perceive odors and the characteristics inherent in CNS neurons. This is due to the fact that the membrane of olfactory cilia contains not only olfactory (odorant) receptor proteins, but also receptors for such neurotransmitters as glutamate, dopamine, serotonin, adrenaline, and acetylcholine that play a neuroprotective and modulating role in the functioning of the olfactory analyzer’s receptor apparatus. Moreover, the expression and functionality of receptors for these neurotransmitters in OSN is of particular interest because they are implicated in the pathogenesis of diseases, such as schizophrenia, Parkinson’s disease, and other neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McClintock TS, Khan N, Xie C, Martens JR (2020) Maturation of the Olfactory Sensory Neuron and Its Cilia. Chemical Senses 45:805–822. https://doi.org/10.1093/chemse/bjaa070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samoilov VO, Bigdai EV, Dudich BA, Rudenko YN, Bekusova VV (2008) Two molecular motility systems of the frog olfactory cilia. Biophysics 53:539–543. (In Russ).

  3. Qiu L, LeBel R, Storm DR, Chen X (2016) Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. J Physiol Pathophysiol Pharmacol 8:95–108.

  4. Bigdai EV (2004) Heterogeneity of molecular mechanisms of olfactory reception. Russ J Physiol 90:790–800. (In Russ).

  5. Bigdai EV, Samoilov VO (2018) Chemosensory and mechanosensory functions of olfactory cilia. Biophysics 63:1146–1153. (In Russ). https://doi.org/10.1134/S0006350918060027

    Article  Google Scholar 

  6. Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR (2010) Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 4:1–8. https://doi.org/10.3389/fncir.2010.00120

    Article  Google Scholar 

  7. Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional Architecture of Olfactory Ionotropic Glutamate Receptors. Neuron 69:44–60. https://doi.org/10.1016/j.neuron.2010.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Q, Man Y, Li J, Pei D, Wu W (2017) Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae). J Med Entomol 54:1229–1235. https://doi.org/10.1093/jme/tjx063

    Article  CAS  PubMed  Google Scholar 

  9. Borgmann-Winter KE, Rawson NE, Wang H-Y, Wang H, MacDonald ML, Ozdener MH, Yee KK, Gomez G, Xu J, Bryant B, Adamek G, Mirza N, Pribitkin E, Hahn C-G (2009) Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 158:642–653. https://doi.org/10.1016/j.neuroscience.2008.09.059

    Article  CAS  PubMed  Google Scholar 

  10. Lee JH, Wei L, Deveau TC, Gu X, Yu SP (2016) Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Brain Struct Funct 221:3259-3273. https://doi.org/10.1007/s00429-015-1099-3

    Article  CAS  PubMed  Google Scholar 

  11. Kehoe LA, Bernardinelli Y, Muller D (2013) GluN3A: An NMDA Receptor Subunit with Exquisite Properties and Functions. Neural Plasticity 2013:145387. https://doi.org/10.1155/2013/145387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tong G, Takahashi H, Tu S, Shin Y, Talantova M, Zago W, Xia P, Nie Z, Goetz T, Zhang D, Lipton SA, Nakanishi N (2008) Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons. J Neurophysiol 99:122–132. https://doi.org/10.1152/jn.01044.2006

    Article  CAS  PubMed  Google Scholar 

  13. Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D, Chen H-SV, Tong G, Lipton SA (2009) Neuroprotection by the NR3A Subunit of the NMDA Receptor. J Neurosci 29:5260–5265. https://doi.org/10.1523/JNEUROSCI.1067-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henson MA, Larsen RS, Lawson SN, Pérez-Otaño I, Nakanishi N, Lipton SA, Philpot BD (2012) Genetic Deletion of NR3A Accelerates Glutamatergic Synapse Maturation. PLoS ONE 7:e42327.

  15. Low C-M, Wee KS-L (2010) New Insights into the Not-So-New NR3 Subunits of N-Methyl-D-aspartate Receptor: Localization, Structure, and Functio. Mol Pharmacol 78:1–11. https://doi.org/10.1124/mol.110.064006

    Article  CAS  PubMed  Google Scholar 

  16. Chetkovich DM, Sweatt JD (1993) NMDA Receptor Activation Increases Cyclic AMP in Area CA 1 of the Hippocampus via Calcium/Calmodulin Stimulation of Adenylyl Cyclase. J Neurochem 61:1933–1942. https://doi.org/10.1111/j.1471-4159.1993.tb09836.x

    Article  CAS  PubMed  Google Scholar 

  17. Lee JH, Wei ZZ, Chen D, Gu X, Wei L, Yu SP (2015) A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse. Am J Physiol Cell Physiol 308:C570–C577. https://doi.org/10.1152/ajpcell.00353.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kleene SJ (2008) The Electrochemical Basis of Odor Transduction in Vertebrate Olfactory Cilia. Chem Senses 33:839–859. https://doi.org/10.1093/chemse/bjn048

    Article  CAS  PubMed  Google Scholar 

  19. Hanh C-G, Han L-Y, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, Arnold SE (2005) In Vivo and In Vitro Neurogenesis in Human Olfactory Epithelium. J Compar Neurol 483:154–163. https://doi.org/10.1002/cne.20424

    Article  Google Scholar 

  20. Pantazopoulos H, Boyer-Boiteau A, Holbrook EH, Jang W, Hahn C-G, Arnold SE, Berretta S (2013) Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia. Spec Sect Negat Symptoms 150:366–372. https://doi.org/10.1016/j.schres.2013.08.013

    Article  Google Scholar 

  21. Arnold SE, Han L-Y, Moberg PJ, Turetsky BI, Gur RE, Trojanowski JQ, Hahn C-G (2001) Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry 58:829–835. https://doi.org/10.1001/archpsyc.58.9.829

    Article  CAS  PubMed  Google Scholar 

  22. Javitt DC (2007) Glutamate and Schizophrenia: Phencyclidine, N-Methyl-d-Aspartate Receptors, and Dopamine–Glutamate Interactions. Integrat Neurobiol Schizophr 78:69–108. https://doi.org/10.1016/S0074-7742(06)78003-5

    Article  CAS  Google Scholar 

  23. Thukral V, Chikaraishi D, Hunter DD, Wang JKT (1997) Expression of non-N-Methyl-D-Aspartate glutamate receptor Subunits in the olfactory epithelium. Neuroscience 79:411–424. https://doi.org/10.1016/s0306-4522(96)00699-9

    Article  CAS  PubMed  Google Scholar 

  24. Féron F, Vincent A, Mackay-Sim A (1999) Dopamine promotes differentiation of olfactory neuron in vitro. Brain Res 845:252–259. https://doi.org/10.1016/s0006-8993(99)01959-9

    Article  PubMed  Google Scholar 

  25. Coronas V, Srivastava LK, Liang J-J, Jourdan F, Moyse E (1997) Identification and localization of dopamine receptor subtypes in rat olfactory mucosa and bulb: a combined in situ hybridization and ligand binding radioautographic approach. J Chem Neuroanat. 12:243–257. https://doi.org/10.1016/s0891-0618(97)00215-9

    Article  CAS  PubMed  Google Scholar 

  26. Koster NL, Norman AB, Richtand NM, Nickell WT, Puche AC, Pixley YSK, Shipley MT (1999) Olfactory receptor neurons express D2 dopamine receptors. J Comp Neurol 411:666–673. https://doi.org/10.1002/(sici)1096-9861(19990906)411:4<666::aid-cne10>3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  27. Martel JC, McArthur SG (2020) Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 11:1–17. https://doi.org/10.3389/fphar.2020.01003

    Article  CAS  Google Scholar 

  28. Carli M, Kolachalam S, Aringhieri S, Rossi M, Giovannini L, Maggio R, Scarsell M (2018) Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them? Current Neuropharmacol 16:222–230. https://doi.org/10.2174/1570159X15666170518151127

    Article  CAS  Google Scholar 

  29. Coronas V, Féron F, Hen R, Sicard G, Jourdan F, Moyse E (1997) In Vitro Induction of Apoptosis or Differentiation by Dopamine in an Immortalized Olfactory Neuronal Cell Line. J Neurochem 69:1870–1881.

  30. Bigdai EV, Samoilov VO, Fufachev DK, Petrov PR (2017) Mechanisms of electromechanical and electrochemical coupling in olfactory cilia of the frog (Rana temporaria). Biophysics 62:240–246. (In Russ). https://doi.org/10.1134/S0006350917020051

    Article  Google Scholar 

  31. Hegg CC, Lucero MT (2004) Dopamine Reduces Odor- and Elevated-K+-Induced Calcium Responses in Mouse Olfactory Receptor Neurons In Situ. J Neurophysiol 91:1492–1499.

  32. Vargas G, Lucero MT (1999) Dopamine modulates inwardly rectifying hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons. J Neurophysiol 81:149–158. https://doi.org/10.1152/jn.1999.81.1.149

    Article  CAS  PubMed  Google Scholar 

  33. Yano H, Cai N-S, Xu M, Verma RK, Rea W, Hoffman AF, Shi L, Javitch JA, Bonci A, Ferré S (2018) Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. Nat Communicat 9:486. https://doi.org/10.1038/s41467-017-02606-w

    Article  CAS  Google Scholar 

  34. Lucero MT, Squires A (1998) Catecholamine concentrations rat nasal mucus are modulated by trigeminal stimulation of the nasal cavity. Brain Res 807:234–236. https://doi.org/10.1016/s0006-8993(98)00825-7

    Article  CAS  PubMed  Google Scholar 

  35. Coronas V, Krantic S, Jourdan F, Moyse E (1999) Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological-radioautographyic approach. Neuroscience 90:69–78. https://doi.org/10.1016/s0306-4522(98)00460-6

    Article  CAS  PubMed  Google Scholar 

  36. Gao S, Guo X, Liu T, Liu J, Chen W, Xia Q, Chen Y, Tang Y (2013) Serotonin Modulates Outward Potassium Currents in Mouse Olfactory Receptor Neurons. Physiol Res 62:455–462. https://doi.org/10.33549/physiolres.932413

    Article  CAS  PubMed  Google Scholar 

  37. Hedlund B, Shepherd GM (1983) Biochemical studies on muscarinic receptors in the salamander olfactory epithelium. FEBS Lett 162:428–431. https://doi.org/10.1016/0014-5793(83)80801-1

    Article  CAS  PubMed  Google Scholar 

  38. Li YR, Matsunami H (2011) Activation state of the M3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling. Sci Signal 4:1–14. https://doi.org/10.1126/scisignal.2001230

    Article  CAS  Google Scholar 

  39. Hall RA (2011) Autonomic modulation of olfactory signaling. Sci Signal 4(155):1–11. https://doi.org/10.1126/scisignal.2001672

    Article  CAS  Google Scholar 

  40. Jiang Y, Li YR, Tian H, Ma M, Matsunami H (2015) Muscarinic Acetylcholine Receptor M3 Modulates Odorant Receptor Activity via Inhibition of β-Arrestin-2 Recruitment. Nat Commun 6:6448. https://doi.org/10.1038/ncomms7448

    Article  CAS  PubMed  Google Scholar 

  41. Ohkuma M, Kawai F, Miyachi E (2013) Acetylcholine enhances excitability by lowering the threshold of spike generation in olfactory receptor cells. J Neurophysiol 110:2082–2089. https://doi.org/10.1152/jn.01077.2012

    Article  CAS  PubMed  Google Scholar 

  42. Omura M, Grosmaitre X, Ma M, Mombaerts P (2014) The β2-adrenergic receptor as a surrogate odorant receptor in mouse olfactory sensory neurons. Mol Cell Neurosci 58:1–10. https://doi.org/10.1016/j.mcn.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  43. Kawai F, Kurahashi T, Kaneko A (1999) Adrenaline enhances odorant contrast by modulating signal encoding in olfactory receptor cells. Nat Neurosci 2:133–138.

  44. Gänger S, Schindowski K (2018) Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 10:116. https://doi.org/10.3390/pharmaceutics10030116

    Article  CAS  PubMed Central  Google Scholar 

  45. Getchell ML, Getchell TV (1992) Fine Structural Aspects of Secretion and Extrinsic Innervation in the Olfactory Mucosa. Microsc Res Techn 23:lll-127. https://doi.org/10.1002/jemt.1070230203

    Article  Google Scholar 

  46. Lucero MT (2013) Peripheral Modulation of Smell: Fact or Fiction? Semin Cell Dev Biol 24:58–70. https://doi.org/10.1016/j.semcdb.2012.09.001

    Article  PubMed  Google Scholar 

  47. Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W (2011) Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 106:1274–1287. https://doi.org/10.1152/jn.00186.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci USA 104:2471–2476. https://doi.org/10.1073/pnas.0610201104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444:221–226. https://doi.org/10.1002/cne.10143

    Article  PubMed  Google Scholar 

Download references

Funding

The writing of this review article was supported by the Program of fundamental scientific research at the state Academies for 2014–2020 (SP-14, section 63).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and data collection (V.O.S.); data collection, manuscript writing and editing (E.V.B.).

Corresponding author

Correspondence to E. V. Bigdai.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 6, pp. 699–711https://doi.org/10.31857/S0869813922060012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigdai, E.V., Samoilov, V.O. Role of Neurotransmitters in the Functioning of Olfactory Sensory Neurons. J Evol Biochem Phys 58, 865–874 (2022). https://doi.org/10.1134/S0022093022030206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030206

Keywords:

Navigation