Skip to main content
Log in

The geometry and DSZ quantization four-dimensional supergravity

  • Original Paper
  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We implement the Dirac–Schwinger–Zwanziger integrality condition on four-dimensional classical ungauged supergravity and use it to obtain its duality-covariant, gauge-theoretic, differential-geometric model on an oriented four-manifold M of arbitrary topology. Classical bosonic supergravity is completely determined by a submersion \(\pi \) over M equipped with a complete Ehresmann connection, a vertical Euclidean metric and a vertically polarized flat symplectic vector bundle \(\Xi \). Building on these structures, we implement the Dirac–Schwinger–Zwanziger integrality condition through the choice of an element in the degree-two sheaf cohomology group with coefficients in a locally constant sheaf \(\mathcal {L}\subset \Xi \) valued in the groupoid of integral symplectic spaces. We show that these data determine a Siegel principal bundle \(P_{\mathfrak {t}}\) of fixed type \(\mathfrak {t}\in \mathbb {Z}^{n_v}\) whose connections provide the global geometric description of the local electromagnetic gauge potentials of the theory. Furthermore, we prove that the Maxwell gauge equations of the theory reduce to the polarized self-duality condition determined by \(\Xi \) on the connections of \(P_{\mathfrak {t}}\). In addition, we investigate the continuous and discrete U-duality groups of the theory, characterizing them through short exact sequences and realizing the latter through the gauge group of \(P_{\mathfrak {t}}\) acting on its adjoint bundle. This elucidates the geometric origin of U-duality, which we explore in several examples, illustrating its dependence on the topology of the fiber bundles \(\pi \) and \(P_{\mathfrak {t}}\) as well as on the isomorphism type of \(\mathcal {L}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is a classical notion in the theory of symplectic lattices see for instance [12] or [27, Appendix B] for more details.

  2. See [27, 28] for its precise definition.

References

  1. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Andrianopoli, L., Bertolini, M., Ceresole, A., D’Auria, R., Ferrara, S., Fre, P., Magri, T.: N=2 supergravity and N=2 superYang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Andrianopoli, L., D’Auria, R., Ferrara, S.: U duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A 13, 431 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aschieri, P., Ferrara, S., Zumino, B.: Duality rotations in nonlinear electrodynamics and in extended supergravity. Riv. Nuovo Cim. 31, 625 (2008)

    ADS  Google Scholar 

  5. Baraglia, D.: Topological T-duality for general circle bundles. Pure Appl. Math. Q. 10(3), 367–438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baraglia, D.: Topological T-duality for torus bundles with monodromy. Rev. Math. Phys. 27(3), 1550008 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ceresole, A., D’Auria, R., Ferrara, S.: The Symplectic structure of N=2 supergravity and its central extension. Nucl. Phys. Proc. Suppl. 46, 67 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ceresole, A., D’Auria, R., Ferrara, S., Van Proeyen, A.: Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity. Nucl. Phys. B 444, 92 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cortés, V., Lazaroiu, C.I., Shahbazi, C.S.: \({\cal{N} }=1\) Geometric Supergravity and chiral triples on Riemann surfaces. Commun. Math. Phys. (2019)

  10. Cremmer, E., Ferrara, S., Girardello, L., Van Proeyen, A.: Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and superhiggs effect. Nucl. Phys. B 212, 413 (1983)

    Article  ADS  Google Scholar 

  11. Cremmer, E., Ferrara, S., Girardello, L., Van Proeyen, A.: Coupling supersymmetric Yang-Mills theories to supergravity. Phys. Lett. 116B, 231 (1982)

    Article  ADS  Google Scholar 

  12. Debarre, O.: Tores et variétés abéliennes complexes, EDP Sciences (2000)

  13. de Wit, B., Lauwers, P.G., Van Proeyen, A.: Lagrangians of N=2 supergravity - matter systems. Nucl. Phys. B 255, 569 (1985)

    Article  ADS  Google Scholar 

  14. de Wit, B., Van Proeyen, A.: Potentials and symmetries of general gauged N=2 supergravity: Yang-Mills models. Nucl. Phys. B 245, 89 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133(821), 60–72 (1931)

    Article  ADS  MATH  Google Scholar 

  16. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs, Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  17. Ehresmann, C.: Les connexions infinitesimales dans un espace fibre differentiable, Colloque de topologie (espaces fibres), Bruxelles. Georges Thone. Liege 1951, 29–55 (1950)

    Google Scholar 

  18. Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  19. Gaillard, M.K., Zumino, B.: Duality rotations for interacting fields. Nucl. Phys. B 193, 221 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gallerati, A., Trigiante, M.: Introductory lectures on extended supergravities and gaugings. Springer Proc. Phys. 176, 41–109 (2016)

    Article  MATH  Google Scholar 

  21. Galli, P., Ortin, T., Perz, J., Shahbazi, C.S.: Non-extremal black holes of N=2, d=4 supergravity. JHEP 1107, 041 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hull, C., Townsend, P.: Unity of superstring dualities. Nucl. Phys. B 438, 109–137 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hull, C., Van Proeyen, A.: Pseudoduality. Phys. Lett. B 351, 188–193 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lazaroiu, C.I., Shahbazi, C.S.: Geometric U-folds in four dimensions. J. Phys. A 51(1), 015207 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lazaroiu, C.I., Shahbazi, C.S.: Generalized einstein-scalar-maxwell theories and locally geometric U-folds. Rev. Math. Phys. 30(05), 1850012 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazaroiu, C.I., Shahbazi, C.S.: Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds. J. Geom. Phys. 128, 58 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lazaroiu, C.I., Shahbazi, CS.: The Duality Covariant Geometry and DSZ Quantization of Abelian Gauge Theory, to appear in Advances in Theoretical and Mathematical Physics

  28. Lazaroiu, C.I., Shahbazi, C.S.: The classification of weakly abelian principal bundles, preprint

  29. Liu, C.H., Yau, S.T.: Grothendieck Meeting [Wess & Bagger]: [Supersymmetry and Supergravity: IV, V, VI, VII, XXII] (2nd ed.) Reconstructed in Complexified \({\mathbb{Z}}/2\)-graded \(C^\infty \)-Algebraic Geometry, I. Construction Under Trivialization of Spinor Bundle, preprint arXiv:2002.11868

  30. Lopes Cardoso, G., Mohaupt, T.: Special geometry. Hessian structures and applications. Phys. Rep. 855, 1–141 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Mizoguchi, S., Schroder, G.: On discrete U duality in M theory. Class. Quant. Grav. 17, 835–870 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ortín, T.: Gravity and Strings, Cambridge Monographs on Mathematical Physics, 2nd edn. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  33. Schwinger, J.S.: Magnetic charge and quantum field theory. Phys. Rev. 144, 1087–1093 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  34. Wood, C.M.: The Gauss section of a Riemannian immersion. J. Lond. Math. Soc. (2) 33(1), 157–168 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wood, C.M.: Harmonic sections and Yang - Mills fields. Proc. Lond. Math. Soc. (3) 54(3), 544–558 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zwanziger, D.: Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489–1495 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Vicente Cortés and Tomás Ortín for useful comments and discussions. The work of C. I. L. was supported by grant IBS-R003-S1. The work of C.S.S. is supported by the Germany Excellence Strategy Quantum Universe—390833306 and the 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Shahbazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaroiu, C., Shahbazi, C.S. The geometry and DSZ quantization four-dimensional supergravity. Lett Math Phys 113, 4 (2023). https://doi.org/10.1007/s11005-022-01626-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01626-y

Keywords

Mathematics Subject Classification

Navigation