Skip to main content
Log in

Non-extremal black holes of N = 2, d = 4 supergravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a generic recipe for deforming extremal black holes into non-extremal black holes and we use it to find and study the static non-extremal black-hole solutions of several N = 2, d = 4 supergravity models \( \left( {{{{{\text{SL}}\left( {2,\mathbb{R}} \right)}} \left/ {{{\text{U}}(1)}} \right.}} \right. \), \( {\overline {\mathbb{C}\mathbb{P}}^n} \) and STU with four charges). In all the cases considered, the non-extremal family of solutions smoothly interpolates between all the different extremal limits, supersymmetric and not supersymmetric. This fact can be used to explicitly find extremal non-supersymmetric solutions also in the cases in which the attractor mechanism does not completely fix the values of the scalars on the event horizon and they still depend on the boundary conditions at spatial infinity.

We compare (supersymmetry) Bogomol’nyi bounds with extremality bounds, we find the first-order flow equations for the non-extremal solutions and the corresponding super-potential, which gives in the different extremal limits different superpotentials for extremal black holes. We also compute the entropies (areas) of the inner (Cauchy) and outer (event) horizons, finding in all cases that their product gives the square of the moduli-independent entropy of the extremal solution with the same electric and magnetic charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. A. Strominger, Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. G.W. Gibbons and C.M. Hull, A Bogomolny Bound for General Relativity and Solitons in N = 2 Supergravity, Phys. Lett. B 109 (1982) 190 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. K.P. Tod, All Metrics Admitting Supercovariantly Constant Spinors, Phys. Lett. B 121 (1983) 241 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. K. Behrndt et al., Classical and quantum N = 2 supersymmetric black holes, Nucl. Phys. B 488 (1997) 236 [hep-th/9610105] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. W.A. Sabra, General static N = 2 black holes, Mod. Phys. Lett. A 12 (1997) 2585 [hep-th/9703101] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. W.A. Sabra, Black holes in N = 2 supergravity theories and harmonic functions, Nucl. Phys. B 510 (1998) 247 [hep-th/9704147] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [SPIRES].

    Article  ADS  Google Scholar 

  12. G.L. Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [SPIRES].

    Article  Google Scholar 

  13. F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, hep-th/0304094 [SPIRES].

  15. M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N = 2, D = 4 gauged supergravity, JHEP 09 (2003) 019 [hep-th/0307022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [SPIRES].

    Article  ADS  Google Scholar 

  17. J. Bellorín, P. Meessen and T. Ortín, Supersymmetry, attractors and cosmic censorship, Nucl. Phys. B 762 (2007) 229 [hep-th/0606201] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. Hüebscher, P. Meessen, T. Ortín and S. Vaulà, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [SPIRES].

    ADS  Google Scholar 

  19. P. Meessen, Supersymmetric coloured/hairy black holes, Phys. Lett. B 665 (2008) 388 [arXiv:0803.0684] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. M. Hübscher, P. Meessen, T. Ortín and S. Vaulà, N = 2 Einstein-Yang-Mills’s BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [SPIRES].

    Article  Google Scholar 

  21. S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G.T. Horowitz and A. Strominger, Counting States of Near-Extremal Black Holes, Phys. Rev. Lett. 77 (1996) 2368 [hep-th/9602051] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Cvetič and D. Youm, Entropy of Non-Extreme Charged Rotating Black Holes in String Theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [SPIRES].

    ADS  Google Scholar 

  25. D. Kastor and K.Z. Win, Non-extreme Calabi-Yau black holes, Phys. Lett. B 411 (1997) 33 [hep-th/9705090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. K. Behrndt, M. Cvetič and W.A. Sabra, The entropy of near-extreme N = 2 black holes, Phys. Rev. D 58 (1998) 084018 [hep-th/9712221] [SPIRES].

    ADS  Google Scholar 

  27. G.L. Cardoso and V. Grass, On five-dimensional non-extremal charged black holes and FRW cosmology, Nucl. Phys. B 803 (2008) 209 [arXiv:0803.2819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Gruss and Y. Oz, Large Charge Four-Dimensional Non-Extremal N = 2 Black Holes with R 2 -Terms, Class. Quant. Grav. 26 (2009) 245019 [arXiv:0902.3799] [SPIRES].

    Article  ADS  Google Scholar 

  29. E. Gruss and Y. Oz, Large Charge Four-Dimensional Extremal N = 2 Black Holes with R 2 -Terms, JHEP 05 (2009) 041 [arXiv:0902.0831] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Ortín, Extremality versus supersymmetry in stringy black holes, Phys. Lett. B 422 (1998) 93 [hep-th/9612142] [SPIRES].

    ADS  Google Scholar 

  31. T. Mohaupt and O. Vaughan, Non-extremal Black Holes, Harmonic Functions and Attractor Equations, Class. Quant. Grav. 27 (2010) 235008 [arXiv:1006.3439] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Kallosh, N. Sivanandam and M. Soroush, Exact attractive non-BPS STU black holes, Phys. Rev. D 74 (2006) 065008 [hep-th/0606263] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. G.W. Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity, Nucl. Phys. B 207 (1982) 337 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [SPIRES].

    Article  ADS  Google Scholar 

  36. G.W. Moore, Arithmetic and attractors, hep-th/9807087 [SPIRES].

  37. A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042] [SPIRES].

    Article  ADS  Google Scholar 

  38. J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal and non-extremal black holes, JHEP 03 (2009) 150 [arXiv:0810.1528] [SPIRES].

    Article  ADS  Google Scholar 

  39. C.M. Miller, K. Schalm and E.J. Weinberg, Nonextremal black holes are BPS, Phys. Rev. D 76 (2007) 044001 [hep-th/0612308] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions, JHEP 04 (2008) 007 [arXiv:0712.2808] [SPIRES].

    Article  ADS  Google Scholar 

  41. L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First Order Description of Black Holes in Moduli Space, JHEP 11 (2007) 032 [arXiv:0706.0712] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First Order Description of D = 4 static Black Holes and the Hamilton-Jacobi equation, Nucl. Phys. B 833 (2010) 1 [arXiv:0905.3938] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. W. Chemissany et al., Black holes in supergravity and integrability, JHEP 09 (2010) 080 [arXiv:1007.3209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Ceresole and G. Dall’Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 03 (2007) 110 [hep-th/0702088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. A. Van Proeyen, N = 2 supergravity in d = 4, 5, 6 and its matter couplings, lectures given at the Institut Henri Poincaré, Paris France, November 2000, http://itf.fys.kuleuven.be/∼toine/LectParis.pdf.

  47. B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [SPIRES].

    Article  ADS  Google Scholar 

  48. B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity — Matter Systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].

    ADS  Google Scholar 

  49. A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity, JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].

    Article  ADS  Google Scholar 

  50. K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. P.K. Tripathy and S.P. Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 03 (2006) 022 [hep-th/0511117] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. R.R. Khuri and T. Ortín, A Non-Supersymmetric Dyonic Extreme Reissner-Nordstrom Black Hole, Phys. Lett. B 373 (1996) 56 [hep-th/9512178] [SPIRES].

    ADS  Google Scholar 

  53. T. Ortín, Non-supersymmetric (but) extreme black holes, scalar hair and other open problems, proceedings of 33rd Karpacz Winter School of Theoretical Physics “Duality — Strings & Fields, Karpacz Poland (1997), Z. Hasiewicz, Z. Jaskólski and J. Sobczyk eds. [Nucl. Phys. Proc. Suppl. A 61 (1998) 131] [hep-th/9705095] [SPIRES].

  54. R. Kallosh, N. Sivanandam and M. Soroush, The non-BPS black hole attractor equation, JHEP 03 (2006) 060 [hep-th/0602005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. E. Lozano-Tellechea and T. Ortín, The general, duality-invariant family of non-BPS black-hole solutions of N = 4, D = 4 supergravity, Nucl. Phys. B 569 (2000) 435 [hep-th/9910020] [SPIRES].

    Article  ADS  Google Scholar 

  56. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. A.D. Shapere, S. Trivedi and F. Wilczek, Dual dilaton dyons, Mod. Phys. Lett. A 6 (1991) 2677 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. T. Ortín, Electric-magnetic duality and supersymmetry in stringy black holes, Phys. Rev. D 47 (1993) 3136 [hep-th/9208078] [SPIRES].

    ADS  Google Scholar 

  59. R. Kallosh and T. Ortín, Charge quantization of axion-dilaton black holes, Phys. Rev. D 48 (1993) 742 [hep-th/9302109] [SPIRES].

    ADS  Google Scholar 

  60. R. Kallosh, D. Kastor, T. Ortín and T. Torma, Supersymmetry and stationary solutions in dilaton axion gravity, Phys. Rev. D 50 (1994) 6374 [hep-th/9406059] [SPIRES].

    ADS  Google Scholar 

  61. D.V. Galtsov and O.V. Kechkin, Ehlers-Harrison type transformations in dilaton-axion gravity, Phys. Rev. D 50 (1994) 7394 [hep-th/9407155] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. D.V. Galtsov, A.A. Garcia and O.V. Kechkin, Symmetries of the stationary Einstein-Maxwell dilaton-axion theory, J. Math. Phys. 36 (1995) 5023 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Rogatko, Stationary axisymmetric axion-dilaton black holes: Mass formulae, Class. Quant. Grav. 11 (1994) 689 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. A. García, D. Galtsov and O. Kechkin, Class of stationary axisymmetric solutions of the Einstein-Maxwell dilaton-axion field equations, Phys. Rev. Lett. 74 (1995) 1276 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. M. Rogatko, The Bogomolnyi type bound in axion-dilaton gravity, Class. Quant. Grav. 12 (1995) 3115 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. D.V. Galtsov and O.V. Kechkin, U duality and symplectic formulation of dilaton-axion gravity, Phys. Rev. D 54 (1996) 1656 [hep-th/9507005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. I. Bakas, Solitons of axion-dilaton gravity, Phys. Rev. D 54 (1996) 6424 [hep-th/9605043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  68. E. Bergshoeff, R. Kallosh and T. Ortín, Stationary Axion/Dilaton Solutions and Supersymmetry, Nucl. Phys. B 478 (1996) 156 [hep-th/9605059] [SPIRES].

    Article  ADS  Google Scholar 

  69. G. Clement and D.V. Galtsov, Stationary BPS solutions to dilaton-axion gravity, Phys. Rev. D 54 (1996) 6136 [hep-th/9607043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  70. S. Bellucci, S. Ferrara and A. Marrani, On some properties of the attractor equations, Phys. Lett. B 635 (2006) 172 [hep-th/0602161] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. G.L. Cardoso, V. Grass, D. Lüst and J. Perz, Extremal non-BPS black holes and entropy extremization, JHEP 09 (2006) 078 [hep-th/0607202] [SPIRES].

    Article  Google Scholar 

  72. S. Ferrara and A. Marrani, N = 8 non-BPS Attractors, Fixed Scalars and Magic Supergravities, Nucl. Phys. B 788 (2008) 63 [arXiv:0705.3866] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N = 2 Symmetric Manifolds, Phys. Lett. B 652 (2007) 111 [arXiv:0706.1667] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  74. R. Kallosh, A.D. Linde, T. Ortín, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D 46 (1992) 5278 [hep-th/9205027] [SPIRES].

    ADS  Google Scholar 

  75. M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  77. S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, stu Black Holes Unveiled, arXiv:0807.3503 [SPIRES].

  78. S. Ferrara and R. Kallosh, On N = 8 attractors, Phys. Rev. D 73 (2006) 125005 [hep-th/0603247] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. M. Shmakova, Calabi-Yau Black Holes, Phys. Rev. D 56 (1997) 540 [hep-th/9612076] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Ortín.

Additional information

ArXiv ePrint: 1105.3311

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, P., Ortín, T., Perz, J. et al. Non-extremal black holes of N = 2, d = 4 supergravity. J. High Energ. Phys. 2011, 41 (2011). https://doi.org/10.1007/JHEP07(2011)041

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)041

Keywords

Navigation