Skip to main content
Log in

Spectral analysis of scattering resonances with application on high-contrast nanospheres

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we provide further spectral analysis of the general asymptotic scattering resonances formula of small 3D dielectrics of arbitrary shape with high contrast, already derived in other works to a first-order approximation. To investigate the components of a full expansion of such resonances, a breakdown is presented for the case of high-contrast nanospheres, in terms of its radius h in the interval [0, 1]. We also derive, for radially symmetric fields, an exact resonance formula for a spherical scatterer in terms of its radius, not necessarily small, and dielectric susceptibility coefficient, not necessarily high. This formula is further developed and simplified in the case of high contrast nanospheres. Such formulas are useful in imaging applications to identify objects’ properties from frequency measurements. Another application is the study of negative refractive index materials, such as metamaterials, and the anomalous localized resonance phenomenon (ALR) that is associated with cloaking and superlensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zworski, M.: Mathematical study of scattering resonances. Bull. Math. Sci. 7, 1–85 (2016)

    Article  MathSciNet  Google Scholar 

  2. Dyatlov, S., Zworski, M.: Mathematical Theory of Scattering Resonances. Graduate Studies in Mathematics. American Mathematical Society, Providence (2019)

    Book  Google Scholar 

  3. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  Google Scholar 

  4. Meklachi, T., Schotland, J.C., Moskow, S.: Asymptotic analysis of resonances of small volume high contrast linear and nonlinear scatterers. J. Math. Phys. 59(8), 20 (2018)

    Article  MathSciNet  Google Scholar 

  5. Meklachi, T., Milton, G., Onofrei, D., Thaler, A., Funchess, G.: Sensitivity of anomalous localized resonance phenomena with respect to dissipation. Q. Appl. Math. 74(2), 201–234 (2016). https://doi.org/10.1090/qam/1408

    Article  MathSciNet  MATH  Google Scholar 

  6. Milton, G.W., Nicorovici, N.A.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462, 3027–3059 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bouchitté, G., Schweizer, B.: Cloaking of small objects by anomalous localized resonance. Q. J. Mech. Appl. Mech. 63, 437–463 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bruno, O.P., Lintner, S.K.: Superlens-cloaking of small dielectric bodies in the quasistatic regime. J. Appl. Phys. 102, 124502 (2007)

    Article  ADS  Google Scholar 

  9. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M., Milton, G.W.: Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007). https://doi.org/10.1063/1.2783266

    Article  ADS  Google Scholar 

  10. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51, 3–33 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Vasquez, F.G., Milton, G.W., Onofrei, D.: Broadband exterior cloaking. Opt. Express 17(17), 14800–5 (2009)

    Article  ADS  Google Scholar 

  12. Kohn, R.V., Onofrei, D., Vogelius, M., Weinstein, M.I.: Cloaking via change of variables for the Helmholtz equation. Commun. Pure Appl. Math. 63, 973–1016 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Kohn, R.V., Shen, H., Vogelius, M., Weinstein, M.I.: Cloaking via change of variables in electric impedance tomography. Inverse Prob. 24, 015016 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lai, Y., Chen, H., Zhang, Z.-Q., Chan, C.T.: Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102(9), 093901 (2009)

    Article  ADS  Google Scholar 

  15. Liu, H.: Virtual reshaping and invisibility in obstacle scattering. Inverse Prob. 25, 045006 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. McPhedran, R.C., Nicorovici, N.A., Botten, L.C., Milton, G.W.: Cloaking by plasmonic resonance among systems of particles: cooperation or combat? C. R. Phys. 10, 391–399 (2009)

    Article  ADS  Google Scholar 

  17. Miller, D.A.B.: On perfect cloaking. Opt. Express 14(25), 12457–66 (2006)

    Article  ADS  Google Scholar 

  18. Milton, G.W., Nicorovici, N.A., McPhedran, R.C., Cherednichenko, K.D., Jacob, Z.: Solutions in folded geometries, and associated cloaking due to anomalous resonance. New J. Phys. 10, 115021–115042 (2008)

    Article  ADS  Google Scholar 

  19. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  20. Milton, G.W., Nicorovici, N.A., McPhedran, R.C., Podolskiy, V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. A: Math. Phys. Eng. Sci. 461, 3999–4034 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nicorovici, N.A., McPhedran, R.C., Milton, G.W.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B Condensed Matter 49(12), 8479–8482 (1994)

    Article  ADS  Google Scholar 

  22. Alú, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(1 Pt 2), 016623 (2005)

    Article  ADS  Google Scholar 

  23. Bryan, K., Leise, T.L.: Impedance imaging, inverse problems, and Harry Potter’s cloak. SIAM Rev. 52, 359–377 (2010)

    Article  MathSciNet  Google Scholar 

  24. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–9 (2000)

    Article  ADS  Google Scholar 

  25. Zhang, X., Liu, Z.: Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 435–41 (2008)

    Article  ADS  Google Scholar 

  26. Kawata, S., Inouye, Y., Verma, P.: Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3, 388–394 (2009)

    Article  ADS  Google Scholar 

  27. Parimi, P.V., Lu, W., Vodo, P., Sridhar, S.: Photonic crystals: imaging by flat lens using negative refraction. Nature 426, 404 (2003)

    Article  ADS  Google Scholar 

  28. Ammari, H.M., Davies, B., Hiltunen, E.O.: Functional analytic methods for discrete approximations of subwavelength resonator systems (2021)

  29. Ammari, H., Dabrowski, A., Fitzpatrick, B., Millien, P., Sini, M.: Subwavelength resonant dielectric nanoparticles with high refractive indices. Math. Methods Appl. Sci. 42(18), 6567–6579 (2019). https://doi.org/10.1002/mma.5760

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Challa, D.P., Mouffouk, F., Sini, M.: Estimation of a class of quasi-resonances generated by multiple small particles with high surface impedances. Math. Methods Appl. Sci. 42, 3568–3578 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ammari, H., Li, B., Zou, J.: Mathematical analysis of electromagnetic scattering by dielectric nanoparticles with high refractive indices. arXiv (2020). https://doi.org/10.48550/ARXIV.2003.10223

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taoufik Meklachi.

Ethics declarations

Conflicts of interest

N.B. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, B., Li, K. & Meklachi, T. Spectral analysis of scattering resonances with application on high-contrast nanospheres. Lett Math Phys 112, 70 (2022). https://doi.org/10.1007/s11005-022-01564-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01564-9

Keywords

Mathematics Subject Classification

Navigation