Skip to main content
Log in

Near-field and Far-field Optical Properties of Silver Nanospheres: Theoretical and Experimental Investigations of the Size, Shape, Dielectric Environment, and Composition Effects

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Collective oscillation of electrons in the conduction band of noble metal nanoparticles is known as localized surface plasmon resonance (LSPR) phenomena. Investigations of the LSPR include non-radiative near-field behavior near metal nanoparticles and radiative far-field behavior at greater distances which depend on geometric and structural properties of nanoparticles. So, these behavior of the LSPRs can easily be tuned by changing these properties for different applications in biosensors, communications, and optics. In this paper, we investigated the effects of the size, shape, dielectric environment, and composition on near-field and far-field optical properties of silver nanospheres, theoretically and experimentally. For this purpose, silver nanospheres with different diameter sizes, silver nanowires, silver nanocubes, and gold nanospheres were synthesized and characterized and also the two-dimensional finite-difference time-domain (FDTD) method was used for simulations. The results show that the theoretical and experimental studies are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Khademalrasool, M. and Farbod, M., J. Alloys Compd., 2016, vol. 664, pp. 707–714.

    Article  CAS  Google Scholar 

  2. Wu, C., Zhou, X., and Wei, J., Nanoscale Res. Lett., 2015, vol. 10, pp. 354.

    Article  Google Scholar 

  3. Kim, M., Lee, J.H., and Nam, J.M., Adv. Sci., 2019, vol. 6, p. 1900471.

    Article  Google Scholar 

  4. Khademalrasool, M., Talebzadeh, M.D., and Farbod, M., J. Photochem. Photobiol., A, 2020, vol. 396, p.112561.

    Article  CAS  Google Scholar 

  5. Bogle, K.A., Dadge, J.W., Bhoraskar, V.N., Dhole, S.D., and Khairnar, R.S., Mater. Chem. Phys., 2019, vol. 232, pp. 278–283.

    Article  CAS  Google Scholar 

  6. Yu, X., Shang, L., Wang, D., An, L., Li, Z., Liu, J., and Shen, J., Solid State Sci., 2018, vol. 80, pp. 1–5.

    Article  CAS  Google Scholar 

  7. Amarjargal, A., Tijing, L.D., Im, I.-T., and Kim, C.S., Chem. Eng. J., 2013, vol. 226, pp. 243–254.

    Article  CAS  Google Scholar 

  8. Prusty, K. and Swain, S.K., Mater. Sci. Eng., C, 2018, vol. 85, pp. 130–141.

    Article  CAS  Google Scholar 

  9. Zhang, X., Chen, Y.L., Liu, R.-S., and Tsai, D.P., Rep. Prog. Phys., 2013, vol. 76, p. 046401.

    Article  Google Scholar 

  10. Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., J. Phys. Chem. B, 2003, vol. 107, pp. 668–677.

    Article  CAS  Google Scholar 

  11. Christopher, P., Ingram, D.B., and Linic, S., J. Phys. Chem. C, 2010, vol. 114, pp. 9173–9177.

    Article  CAS  Google Scholar 

  12. Farbod, M., Khademalrasool, M., and Talebzadeh, M.D., Plasmonics, 2017, vol. 12, pp. 759–769.

    Article  CAS  Google Scholar 

  13. Liang, H., Wang, W., Huang, Y., Zhang, S., Wei, H., and Xu, H., J. Phys. Chem. C, 2010, vol. 114, pp. 7427–7431.

    Article  CAS  Google Scholar 

  14. Theivasanthi, T. and Alagar, M., arXiv:1111.0260 [physics.gen-ph].

  15. Fan, J., Zhao, Z., Gong, C., Cheng, B., Xue, Y., and Yin, S., Solid State Sci., 2015, vol. 49, pp. 47–53.

    Article  CAS  Google Scholar 

  16. Wan, Y., Guo, Z., Jiang, X., Fang, K., Lu, X., Zhang, Y., and Gu, N., J. Colloid Interface Sci., 2013, vol. 394, pp. 263–268.

    Article  CAS  Google Scholar 

  17. Ashkarran, A.A. and Bayat, A., Int. Nano Lett., 2013, vol. 3, p. 50.

    Article  Google Scholar 

  18. Khademalrasool, M. and Farbod, M., J. Nanostruct., 2015, vol. 5, no. 4, pp. 415–422.

    Google Scholar 

  19. Thomann, I., Pinaud, B.A., Chen, Z., Clemens, B.M., Jaramillo, T.F., and Brongersma, M.L., Nano Lett., 2011, vol. 11, pp. 3440–3446.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the Jundi-Shapur University of Technology of Dezful and Shahid Chamran University of Ahvaz for supporting this work. We also thank Ms. Sedigheh Baghban Shoomikar for her cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Khademalrasool.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khademalrasool, M., Farbod, M. & Talebzadeh, M.D. Near-field and Far-field Optical Properties of Silver Nanospheres: Theoretical and Experimental Investigations of the Size, Shape, Dielectric Environment, and Composition Effects. Prot Met Phys Chem Surf 57, 1180–1190 (2021). https://doi.org/10.1134/S2070205121060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121060113

Keywords:

Navigation