Skip to main content

A Full-Retarded Spectral Technique for the Analysis of Fano Resonances in a Dielectric Nanosphere

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

Abstract

We introduce a representation of the electromagnetic field scattered by a homogeneous sphere in terms of a set of full-retarded modes independent of its permittivity. Within this framework, we introduce the orthogonality properties of the modes, their resonance conditions, and their classification into narrow and broad modes. We also discuss the role played by the material properties in determining the resonant width of a given mode and in enabling or preventing the multimode interference. We use this theory to unveil the origin of Fano lineshapes in the scattering efficiency of a spherical nanoparticle, by identifying the interfering modes responsible for peaks and dips. Eventually, by using the introduced theoretical approach, we design the permittivity of a homogeneous sphere of size comparable to the incident wavelength to cancel its backscattering through directional multimode interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, vol. 25 (Springer Science & Business Media, 2013)

    Google Scholar 

  2. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  3. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)

    Article  ADS  Google Scholar 

  4. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012)

    Article  ADS  Google Scholar 

  5. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  ADS  Google Scholar 

  6. J.B. Khurgin, How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10(1), 2–6 (2015)

    Article  ADS  Google Scholar 

  7. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Optical response features of si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010)

    Article  ADS  Google Scholar 

  8. A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84, 235429 (2011). Dec

    Google Scholar 

  9. A. García-Etxarri, R. Gómez-Medina, L.S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J.J. Sáenz, Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19(6), 4815–4826 (2011)

    Article  ADS  Google Scholar 

  10. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science, 354(6314) (2016)

    Article  Google Scholar 

  11. S. Kruk, Y. Kivshar, Functional meta-optics and nanophotonics govern by mie resonances. ACS Photonics 4(11), 2638–2649 (2017)

    Article  Google Scholar 

  12. M.M. Sigalas, D.A. Fattal, R.S. Williams, S. Wang, R.G. Beausoleil, Electric field enhancement between two si microdisks. Opt. Express 15, 14711–14716 (2007)

    Article  ADS  Google Scholar 

  13. P. Albella, M.A. Poyli, M.K. Schmidt, S.A. Maier, F. Moreno, J.J. Sáenz, J. Aizpurua, Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J. Phys. Chem. C 117(26), 13573–13584 (2013)

    Article  Google Scholar 

  14. P. Albella, R. Alcaraz de la Osa, F. Moreno, S.A. Maier, Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photonics 1(6), 524–529 (2014)

    Article  Google Scholar 

  15. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang, Directional fano resonance in a silicon nanosphere dimer. ACS Nano 9(3), 2968–2980 (2015)

    Article  Google Scholar 

  16. R.M. Bakker, D. Permyakov, Y.F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, A.I. Kuznetsov, Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15(3), 2137–2142 (2015)

    Article  ADS  Google Scholar 

  17. U. Zywietz, M.K. Schmidt, A.B. Evlyukhin, C. Reinhardt, J. Aizpurua, B.N. Chichkov, Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photonics 2(7), 913–920 (2015)

    Article  Google Scholar 

  18. G. Boudarham, R. Abdeddaim, N. Bonod, Enhancing the magnetic field intensity with a dielectric gap antenna. Appl. Phys. Lett. 104(2), 021117 (2014)

    Article  ADS  Google Scholar 

  19. A. Mirzaei, A.E. Miroshnichenko, Electric and magnetic hotspots in dielectric nanowire dimers. Nanoscale 7(14), 5963–5968 (2015)

    Article  ADS  Google Scholar 

  20. J. van de Groep, T. Coenen, S.A. Mann, A. Polman, Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica 3, 93–99 (2016). Jan

    Article  Google Scholar 

  21. D. Smirnova, Y.S. Kivshar, Multipolar nonlinear nanophotonics. Optica 3, 1241–1255 (2016)

    Google Scholar 

  22. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R.F. Oulton, A.V. Bragas, S.A. Maier, Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6 (2015)

    Google Scholar 

  23. P.A. Dmitriev, D.G. Baranov, V.A. Milichko, S.V. Makarov, I.S. Mukhin, A.K. Samusev, A.E. Krasnok, P.A. Belov, Y.S. Kivshar, Resonant raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale 8, 9721–9726 (2016)

    Article  ADS  Google Scholar 

  24. V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling, Quantum dot emission driven by mie resonances in silicon nanostructures. Nano Lett. 17(11), 6886–6892 (2017). PMID: 28968505

    Article  ADS  Google Scholar 

  25. A. Krasnok, M. Caldarola, N. Bonod, A. Alú, Spectroscopy and biosensing with optically resonant dielectric nanostructures, arXiv:1710.10233 (2017)

  26. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Article  ADS  Google Scholar 

  27. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12(7), 3749–3755 (2012)

    Article  ADS  Google Scholar 

  28. A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J. Zhang, B. Luk’Yanchuk, Magnetic light. Sci. Rep. 2, 492 (2012)

    Google Scholar 

  29. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, M. Tribelsky, Giant field enhancement in high-index dielectric subwavelength particles. Sci. Rep. 7(1), 731 (2017)

    Article  ADS  Google Scholar 

  30. M.K. Schmidt, R. Esteban, J.J. Sáenz, I. Suárez-Lacalle, S. Mackowski, J. Aizpurua, Dielectric antennas—a suitable platform for controlling magnetic dipolar emission. Opt. Express 20, 13636–13650 (2012). Jun

    Google Scholar 

  31. B. Rolly, B. Bebey, S. Bidault, B. Stout, N. Bonod, Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances. Phys. Rev. B 85, 245432 (2012)

    Article  ADS  Google Scholar 

  32. T. Feng, Y. Xu, Z. Liang, W. Zhang, All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett. 41, 5011–5014 (2016). Nov

    Article  ADS  Google Scholar 

  33. J. Li, N. Verellen, P. Van Dorpe, Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photonics 4(8), 1893–1898 (2017)

    Article  Google Scholar 

  34. D.G. Baranov, R.S. Savelev, S.V. Li, A.E. Krasnok, A. Alù, Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev. (2017)

    Google Scholar 

  35. D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, S.-D. Liu, Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J. Phys. Chem. C 119(8), 4252–4260 (2015)

    Article  Google Scholar 

  36. A.E. Miroshnichenko, Y.S. Kivshar, Fano resonances in all-dielectric oligomers. Nano Lett. 12(12), 6459–6463 (2012)

    Article  ADS  Google Scholar 

  37. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88(5), 053819 (2013)

    Article  ADS  Google Scholar 

  38. K.E. Chong, B. Hopkins, I. Staude, A.E. Miroshnichenko, J. Dominguez, M. Decker, D.N. Neshev, I. Brener, Y.S. Kivshar, Observation of fano resonances in all-dielectric nanoparticle oligomers. Small 10(10), 1985–1990 (2014)

    Article  Google Scholar 

  39. D.S. Filonov, A.P. Slobozhanyuk, A.E. Krasnok, P.A. Belov, E.A. Nenasheva, B. Hopkins, A.E. Miroshnichenko, Y.S. Kivshar, Near-field mapping of fano resonances in all-dielectric oligomers. Appl. Phys. Lett. 104(2), 021104 (2014)

    Article  ADS  Google Scholar 

  40. P. Fan, Z. Yu, S. Fan, M.L. Brongersma, Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 13(5), 471–475 (2014)

    Article  ADS  Google Scholar 

  41. M. Nieto-Vesperinas, R. Gomez-Medina, J. Saenz, Angle-suppressed scattering and optical forces on submicrometer dielectric particles. JOSA A 28(1), 54–60 (2011)

    Article  ADS  Google Scholar 

  42. J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas et al., Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012)

    Article  ADS  Google Scholar 

  43. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013)

    Article  ADS  Google Scholar 

  44. S. Person, M. Jain, Z. Lapin, J.J. Saenz, G. Wicks, L. Novotny, Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13(4), 1806–1809 (2013)

    Article  ADS  Google Scholar 

  45. B. Rolly, B. Stout, N. Bonod, Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Opt. Express 20, 20376–20386 (2012)

    Article  ADS  Google Scholar 

  46. W. Liu, A.E. Miroshnichenko, D.N. Neshev, Y.S. Kivshar, Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. ACS Nano 6(6), 5489–5497 (2012)

    Article  Google Scholar 

  47. W. Liu, A.E. Miroshnichenko, R.F. Oulton, D.N. Neshev, O. Hess, Y.S. Kivshar, Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt. Lett. 38(14), 2621–2624 (2013)

    Article  ADS  Google Scholar 

  48. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M.L. Juan, X. Vidal, G. Molina-Terriza, Duality symmetry and kerker conditions. Opt. Lett. 38, 1857–1859 (2013)

    Article  ADS  Google Scholar 

  49. R. Alaee, R. Filter, D. Lehr, F. Lederer, C. Rockstuhl, A generalized kerker condition for highly directive nanoantennas. Opt. Lett. 40, 2645–2648 (2015)

    Article  ADS  Google Scholar 

  50. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, H. Hu, Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22, 16178–16187 (2014)

    Article  ADS  Google Scholar 

  51. C. Sauvan, J.-P. Hugonin, I. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110(23), 237401 (2013)

    Article  ADS  Google Scholar 

  52. F. Ouyang, M. Isaacson, Accurate modeling of particle-substrate coupling of surface plasmon excitation in EELS. Ultramicroscopy 31(4), 345–349 (1989)

    Article  Google Scholar 

  53. F. Ouyang, M. Isaacson, Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Philos. Mag. Part B 60(4), 481–492 (1989)

    Article  ADS  Google Scholar 

  54. F.J. Garcia de Abajo, A. Howie, Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 80, 5180–5183 (1998)

    Article  ADS  Google Scholar 

  55. D.R. Fredkin, I.D. Mayergoyz, Resonant behavior of dielectric objects (electrostatic resonances). Phys. Rev. Lett. 91 (2003)

    Google Scholar 

  56. I. Mayergoyz, D. Fredkin, Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72, 155412 (2005)

    Article  ADS  Google Scholar 

  57. C. Forestiere, L. Dal Negro, G. Miano, Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures. Phys. Rev. B 88(15), 155411 (2013)

    Article  ADS  Google Scholar 

  58. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998)

    Google Scholar 

  59. C. Forestiere, G. Miano, Material-independent modes for electromagnetic scattering. Phys. Rev. B 94, 201406 (2016)

    Article  ADS  Google Scholar 

  60. C. Forestiere, G. Miano, On the nanoparticle resonances in the full-retarded regime. J. Opt. 19(075601), 075601 (2017)

    Article  ADS  Google Scholar 

  61. R. Fuchs, Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 11, 1732–1740 (1975)

    Article  ADS  Google Scholar 

  62. D.J. Bergman, D. Stroud, Theory of resonances in the electromagnetic scattering by macroscopic bodies. Phys. Rev. B 22(8), 3527 (1980)

    Article  ADS  Google Scholar 

  63. D.J. Bergman, The dielectric constant of a composite material-a problem in classical physics. Phys. Rep. 43(9), 377–407 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Rojas, F. Claro, Electromagnetic response of an array of particles: Normal-mode theory. Phys. Rev. B 34, 3730–3736 (1986)

    Article  ADS  Google Scholar 

  65. V.A. Markel, Antisymmetrical optical states. J. Opt. Soc. Am. B 12, 1783–1791 (1995)

    Article  ADS  Google Scholar 

  66. V.A. Markel, Pole expansion of the lorenz-mie coefficients. J. Nanophotonics 4(1), 041555–041555 (2010)

    Article  ADS  Google Scholar 

  67. A. Farhi, D.J. Bergman, Electromagnetic eigenstates and the field of an oscillating point electric dipole in a flat-slab composite structure. Phys. Rev. A 93(6), 063844 (2016)

    Article  ADS  Google Scholar 

  68. M. Pascale, G. Miano, C. Forestiere, Spectral theory of electromagnetic scattering by a coated sphere. JOSA B 34(7), 1524–1535 (2017)

    Article  ADS  Google Scholar 

  69. C. Forestiere, G. Miano, G. Rubinacci, A. Tamburrino, R. Tricarico, S. Ventre, “Volume integral formulation for the calculation of material independent modes of dielectric scatterers". IEEE Tran. Antennas and Propag. 66(5), 2505–2514 (2018)

    Google Scholar 

  70. M. Cessenat, Mathematical methods in electromagnetism, in Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, vol. 41 (1996)

    Google Scholar 

  71. E. Ching, P. Leung, A.M. van den Brink, W. Suen, S. Tong, K. Young, Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70(4), 1545 (1998)

    Article  ADS  Google Scholar 

  72. E.J. Davis, G. Schweiger, The Airborne Microparticle (Springer, 2002)

    Google Scholar 

  73. H.S. C, B.R. E, Morphology-dependent resonances, in Optical Effects Associated with Small Particles ed. by P.W. Barber, R.K. Change, chap. 1 (World Scientific, Singapore, 1988)

    Google Scholar 

  74. P.T. Kristensen, S. Hughes, Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators. ACS Photonics 1(1), 2–10 (2013)

    Article  Google Scholar 

  75. P.T. Kristensen, R.-C. Ge, S. Hughes, Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators. Phys. Rev. A 92(5), 053810 (2015)

    Article  ADS  Google Scholar 

  76. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, 2008)

    Google Scholar 

  77. A. Doicu, T. Wriedt, Y. Eremin, Light Scattering by Systems of Particles (Springer, 2006)

    Google Scholar 

  78. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  79. Y. Jiang, S. Pillai, M.A. Green, Realistic silver optical constants for plasmonics. Sci. Rep. 6 (2016)

    Google Scholar 

  80. M. Kerker, D.-S. Wang, C. Giles, Electromagnetic scattering by magnetic spheres. JOSA 73(6), 765–767 (1983)

    Article  ADS  Google Scholar 

  81. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7(9), 7824–7832 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Forestiere .

Editor information

Editors and Affiliations

Appendix: Vector Spherical Wave Functions

Appendix: Vector Spherical Wave Functions

The explicit expressions of the vector spherical wave functions (VSWF) are [76]:

$$\begin{aligned} \begin{aligned} \mathbf{N}_{\begin{array}{c} e \\ o \end{array}\,m\,n}\left( k \, \mathbf{r} \right)&= n \left( n + 1\right) \left( \begin{array}{cc} \cos m \phi \\ \sin m \phi \end{array} \right) P_n^m \left( \cos \theta \right) \frac{z_n \left( k \,r \right) }{k \,r} \hat{\mathbf{e}}_r \\&+ \left( \begin{array}{cc} \cos m \phi \\ \sin m \phi \end{array} \right) \frac{d P_n^m \left( \cos \theta \right) }{d\theta } \frac{1}{k \,r} \frac{d}{dr} \left[ r z_n \left( k \,r \right) \right] \hat{\mathbf{e}}_ \theta \\&+ m \left( \begin{array}{cc} - \sin m \phi \\ \cos m \phi \end{array} \right) \frac{P_n^m \left( \cos \theta \right) }{\sin \theta } \frac{1}{k \,r} \frac{d}{dr} \left[ r z_n \left( k \,r \right) \right] \hat{\mathbf{e}}_\phi , \\ \mathbf{M}_{\begin{array}{c} e \\ o \end{array}\,m\,n}\left( k \, \mathbf{r} \right)&= m \left( \begin{array}{cc} - \sin m \phi \\ \cos m \phi \end{array} \right) \frac{P_n^m \left( \cos \theta \right) }{\sin \theta } z_n \left( k \,r \right) \hat{\mathbf{e}}_\theta - \left( \begin{array}{cc} \cos m \phi \\ \sin m \phi \end{array} \right) \frac{d P_n^m \left( \cos \theta \right) }{d\theta } z_n \left( k \,r \right) \hat{\mathbf{e}}_\phi . \end{aligned} \end{aligned}$$
(8.55)

where the subscripts e and o denote even and odd, and \(P_n^m \left( \cdot \right) \) are the associated Legendre function of the first kind of degree n and order m. Moreover, the superscripts \(^{\left( 1\right) }\) and \(^{\left( 3\right) }\) are appended to the functions \(\mathbf{M}_{\begin{array}{c} e \\ o \end{array}\,m\,n}\) and \(\mathbf{N}_{\begin{array}{c} e \\ o \end{array}\,m\,n}\) to denote the function \(z_n\), namely Bessel functions of the first kind \(j_n\) and Hankel functions of the first kind \(h_n\), respectively.

Starting from (8.55) it is possible to derive the expression of (8.45):

$$\begin{aligned} \begin{aligned} \mathbf{N}_{\begin{array}{c} e \\ o \end{array} \, m \, n}^{\left( \infty \right) } \left( \theta ,\phi \right)&= {\left( - i \right) ^n} \left( \begin{array}{cc} \cos m \phi \\ \sin m \phi \end{array} \right) \frac{d P_n^m \left( \cos \theta \right) }{d\theta } \hat{\mathbf{e}}_ \theta + {\left( - i \right) ^n} m \left( \begin{array}{cc} - \sin m \phi \\ \cos m \phi \end{array} \right) \frac{P_n^m \left( \cos \theta \right) }{\sin \theta } \hat{\mathbf{e}}_\phi , \\ \mathbf{M}_{\begin{array}{c} e \\ o \end{array} \, m \, n}^{\left( \infty \right) } \left( \theta ,\phi \right)&= {\left( - i \right) ^{n+1}} m \left( \begin{array}{cc} - \sin m \phi \\ \cos m \phi \end{array} \right) \frac{P_n^m \left( \cos \theta \right) }{\sin \theta } \hat{\mathbf{e}}_\theta - {\left( - i \right) ^{n+1}} \left( \begin{array}{cc} \cos m \phi \\ \sin m \phi \end{array} \right) \frac{d P_n^m \left( \cos \theta \right) }{d\theta } \hat{\mathbf{e}}_\phi . \end{aligned} \end{aligned}$$
(A2)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forestiere, C., Miano, G., Pascale, M., Tricarico, R. (2018). A Full-Retarded Spectral Technique for the Analysis of Fano Resonances in a Dielectric Nanosphere. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_8

Download citation

Publish with us

Policies and ethics