Skip to main content
Log in

Coproduct for affine Yangians and parabolic induction for rectangular W-algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct algebra homomorphisms from affine Yangians to the current algebras of rectangular W-algebras both in type A. The construction is given via the coproduct and the evaluation map for the affine Yangians. As a consequence, we show that parabolic inductions for representations of the rectangular W-algebras can be regarded as tensor product representations of the affine Yangians under the homomorphisms. The same method is applicable also to the super-setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. Arakawa, T.: Representation theory of \({\mathscr {W}}\)-algebras. Invent. Math. 169(2), 219–320 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Arakawa, T.: Introduction to W-algebras and their representation theory, Perspectives in Lie theory, Springer INdAM Ser., vol. 19, pp. 179–250. Springer, Cham (2017)

  4. Arakawa, T.: Representation theory of \(W\)-algebras and Higgs branch conjecture. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. vol. II. Invited lectures. pp. 1263–1281. World Sci. Publ., Hackensack, NJ (2018)

  5. Arakawa, T., Molev, A.: Explicit generators in rectangular affine \({\cal{W}}\)-algebras of type \(A\). Lett. Math. Phys. 107(1), 47–59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Braverman, A., Feigin, B., Finkelberg, M., Rybnikov, L.: A finite analog of the AGT relation I: Finite \(W\)-algebras and Quasimaps spaces. Comm. Math. Phys. 308(2), 457–478 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Braverman, A., Finkelberg, M., Nakajima, H.: Instanton moduli spaces and \({\mathscr {W}}\)-algebras, Astérisque (385), vii+128 (2016)

  8. Brundan, J., Kleshchev, A.: Shifted Yangians and finite \(W\)-algebras. Adv. Math. 200(1), 136–195 (2006)

    Article  MathSciNet  Google Scholar 

  9. Brundan, J., Kleshchev, A.: Representations of shifted Yangians and finite \(W\)-algebras. Mem. Amer. Math. Soc. 196(918), viii+107 (2008)

  10. Briot, C., Ragoucy, E.: \({\cal{W}}\)-superalgebras as truncations of super-Yangians. J. Phys. A 36(4), 1057–1081 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Creutzig, T., Hikida, Y.: Rectangular W-algebras, extended higher spin gravity and dual coset CFTs. J. High Energy Phys. 2, 147 (2019). front matter + 30

  12. Creutzig, T., Hikida, Y.: Rectangular \(W\) algebras and superalgebras and their representations. Phys. Rev. D 100(8), 086008 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Eberhardt, L., Procházka, T.: The matrix-extended \({\cal{W}}_{1+\infty }\) algebra. J. High Energy Phys. 12, 175 (2019)

    Article  ADS  Google Scholar 

  14. Feigin, B., Finkelberg, M., Negut, A., Rybnikov, L.: Yangians and cohomology rings of Laumon spaces. Selecta Math. (N.S.) 17(3), 573–607 (2011)

    Article  MathSciNet  Google Scholar 

  15. Feigin, B., Frenkel, E.: Quantization of the Drinfeld-Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Finkelberg, M., Tsymbaliuk, A.: Multiplicative slices, relativistic Toda and shifted quantum affine algebras. Representations and nilpotent orbits of Lie algebraic systems, Progr. Math., vol. 330, pp. 133–304. Birkhäuser/Springer, Cham (2019)

  17. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, vol. 88, 2nd edn. American Mathematical Society, Providence, RI (2004)

  18. Genra, N.: Screening operators for \({mathcal W }\)-algebras. Selecta Math. (N.S.) 23(3), 2157–2202 (2017)

  19. Genra, N.: Screening operators and parabolic inductions for affine \({\cal{W}}\)-algebras (with an appendix by Shigenori Nakatsuka). Adv. Math. 369, 107179 (2020). 62 pages

  20. Guay, N.: Affine Yangians and deformed double current algebras in type A. Adv. Math. 211(2), 436–484 (2007)

    Article  MathSciNet  Google Scholar 

  21. Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac-Moody algebras. Adv. Math. 338, 865–911 (2018)

    Article  MathSciNet  Google Scholar 

  22. Guay, N., Regelskis, V., Wendlandt, C.: Vertex representations for Yangians of Kac-Moody algebras. J. Éc. Polytech. Math. 6, 665–706 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kac, V., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Comm. Math. Phys. 241(2–3), 307–342 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kodera, R.: Braid group action on affine Yangian. SIGMA Symmetry Integrability Geom. Methods Appl. 15, 020 (2019). 28 pages

  25. Kodera, R.: On Guay’s evaluation map for affine Yangians. Algebr. Represent. Theory 24(1), 253–267 (2021). correction 269–272. arXiv:1806.09884

  26. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. Astérisque (408) (2019). ix+209

  27. Nakajima, H.: Handsaw quiver varieties and finite \(W\)-algebras. Mosc. Math. J. 12(3), 633–666, 669–670 (2012)

  28. Nakatsuka, S.: On Miura maps for \({\cal{W}}\)-superalgebras. arXiv:2005.10472

  29. Negut, A.: Toward AGT for parabolic sheaves. arXiv:1911.02963, to appear in IMRN, https://doi.org/10.1093/imrn/rnaa308

  30. Negut, A.: Deformed \(W\)-algebras in type A for rectangular nilpotent. arXiv:2004.02737

  31. Peng, Y.-N.: Finite \(W\)-superalgebras and truncated super Yangians. Lett. Math. Phys. 104(1), 89–102 (2014)

  32. Peng, Y.-N.: Finite \(W\)-superalgebras via super Yangians. Adv. Math. 377, 107459 (2021). 60 pages

  33. Ragoucy, E., Sorba, P.: Yangian realisations from finite \({\cal{W}}\)-algebras. Comm. Math. Phys. 203(3), 551–572 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rapčák, M.: On extensions of \(\widehat{{\mathfrak{gl}}(m|n)}\) Kac-Moody algebras and Calabi-Yau singularities. J. High Energy Phys. (1), 042 (2020). 34 pages

  35. Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on \(\mathbf{A}^2\). Publ. Math. Inst. Hautes Études Sci. 118, 213–342 (2013)

    Article  MathSciNet  Google Scholar 

  36. Ueda, M.: Construction of affine super Yangian. arXiv:1911.06666, to appear in Publ. RIMS

  37. Ueda, M.: Affine super Yangians and rectangular \(W\)-superalgebras, arXiv:2002.03479

  38. Varagnolo, M., Vasserot, E.: K-theoretic Hall algebras, quantum groups and super quantum groups. arXiv:2011.01203

Download references

Acknowledgements

The authors are grateful to Tomoyuki Arakawa, Boris Feigin, Ryo Fujita, Naoki Genra, Toshiro Kuwabara, Andrew Linshaw, Hiraku Nakajima, Shigenori Nakatsuka, Andrei Negut, Masatoshi Noumi, Shoma Sugimoto, Husileng Xiao, Yasuhiko Yamada, and Shintarou Yanagida for valuable discussions and suggestions. They also thank the referees for many helpful comments to improve the paper. Some part of results of this paper were presented by the first named author in Workshop on 3d Mirror Symmetry and AGT Conjecture held on October 21–25, 2019, at Institute for Advanced Study in Mathematics, Zhejiang University, Hangzhou. He thanks their hospitality. The first named author was supported by JSPS KAKENHI Grant Number 18K13390, 21K03155. His work was also supported in part by JSPS Bilateral Joint Projects (JSPS-RFBR collaboration) “Elliptic algebras, vertex operators and link invariants” from MEXT, Japan. The second named author was supported by Grant-in-Aid for JSPS Fellows 20J12072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Kodera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma  A.1 and Proposition  A.2 are statements on the rectangular W-algebra \({\mathcal {W}}^{\kappa }({\mathfrak {g}},f)\) for \(n \ge 1\) and for \(n \ge 2\), respectively.

Lemma A.1

We have

$$\begin{aligned} \begin{aligned} {[} W_{i,j}^{(2)}(m), W_{p,q}^{(1)}(m') ]&= \Big ( \delta _{pj} W_{i,q}^{(2)}(m+m') - \delta _{iq} W_{p,j}^{(2)}(m+m') \Big ) \\&\quad - m'(l-1) \Big ( \delta _{iq} \alpha W_{p,j}^{(1)}(m+m') + \delta _{pq} W_{i,j}^{(1)}(m+m') \Big ) \\&\quad - \dfrac{m'(m'-1)}{2} \delta _{m+m',0} l(l-1)\alpha \Big ( \delta _{iq}\delta _{jp}\alpha + \delta _{ij}\delta _{pq} \Big ). \end{aligned} \end{aligned}$$

In particular, we have

$$\begin{aligned} {[}W_{i,j}^{(2)}(m),W_{p,q}^{(1)}(0)]= & {} \delta _{pj} W_{i,q}^{(2)}(m) - \delta _{iq} W_{p,j}^{(2)}(m),\\ {[}W_{i,j}^{(2)}(m-1),W_{p,q}^{(1)}(1)]= & {} \Big ( \delta _{pj} W_{i,q}^{(2)}(m) - \delta _{iq} W_{p,j}^{(2)}(m) \Big ) \\&- (l-1) \Big ( \delta _{iq} \alpha W_{p,j}^{(1)}(m) + \delta _{pq} W_{i,j}^{(1)}(m) \Big ). \end{aligned}$$

The following assertion slightly refines Proposition 4.5. It can be regarded as an analog of Proposition 6.3.

Proposition A.2

Assume \(l \ge 2,\) \(n \ge 2\) and \(\alpha \ne 0\). Then, \({\mathfrak {U}}({\mathcal {W}}^{\kappa }({\mathfrak {g}},f))\) is topologically generated by

$$\begin{aligned}&\left\{ W_{n,1}^{(1)}(1),\ W_{1,n}^{(1)}(-1),\ W_{i,i+1}^{(1)}(0),\ W_{i+1,i}^{(1)}(0) \mid i=1,\ldots ,n-1 \right\} \\&\quad \cup \left\{ W_{i,i+1}^{(2)}(0) \mid i=1,\ldots ,n-1 \right\} . \end{aligned}$$

Proof

We will gradually construct the elements \(W_{i,j}^{(1)}(m)\), \(W_{i,j}^{(2)}(m)\) for \(i,j=1,\ldots ,n\) and \(m \in {\mathbb {Z}}\). They are topological generators of \({\mathfrak {U}}({\mathcal {W}}^{\kappa }({\mathfrak {g}},f))\) when \(n \ge 2\) and \(\alpha \ne 0\) by Proposition 4.5. The argument below is essentially the same as the one in [37].

  • \(W_{i,j}^{(1)}(m)\) for \(i \ne j\): they are generated from

    $$\begin{aligned} \left\{ W_{n,1}^{(1)}(1),\ W_{1,n}^{(1)}(-1),\ W_{i,i+1}^{(1)}(0),\ W_{i+1,i}^{(1)}(0) \mid i=1,\ldots ,n-1 \right\} \end{aligned}$$

    by the commutation relation (4.4).

  • \(W_{i,i}^{(2)}(0) - W_{j,j}^{(2)}(0)\) for \(i \ne j\): we have

    $$\begin{aligned} \begin{aligned} {[}W_{i,i+1}^{(2)}(0), W_{i+1,i}^{(1)}(0)] = W_{i,i}^{(2)}(0) - W_{i+1,i+1}^{(2)}(0) \end{aligned} \end{aligned}$$

    for \(i=1,\ldots ,n-1\).

  • \(W_{i,j}^{(2)}(m)\) for \(i \ne j\): we have

    $$\begin{aligned} \begin{aligned} {[}W_{i,i}^{(2)}(0) - W_{j,j}^{(2)}(0), W_{i,j}^{(1)}(m)] = 2 W_{i,j}^{(2)}(m) + m(l-1)\alpha W_{i,j}^{(1)}(m) \end{aligned} \end{aligned}$$

    for \(i \ne j\).

  • \(W_{i,i}^{(2)}(m)-W_{j,j}^{(2)}(m)\) for \(i \ne j\): we have

    $$\begin{aligned} \begin{aligned} {[}W_{i,j}^{(2)}(m), W_{j,i}^{(1)}(0)] = W_{i,i}^{(2)}(m)-W_{j,j}^{(2)}(m) \end{aligned} \end{aligned}$$

    for \(i \ne j\).

  • \(W_{i,i}^{(1)}(m)\): we have

    $$\begin{aligned} \begin{aligned} {[}W_{j,i}^{(2)}(m-1), W_{i,j}^{(1)}(1)] = W_{j,j}^{(2)}(m)-W_{i,i}^{(2)}(m) - (l-1)\alpha W_{i,i}^{(1)}(m) \end{aligned} \end{aligned}$$

    for \(i \ne j\).

  • \(W_{i,i}^{(2)}(m)\): we have

    $$\begin{aligned}&{[}W_{i,i}^{(2)}(m) - W_{j,j}^{(2)}(m), W_{i,i}^{(2)}(m') - W_{j,j}^{(2)}(m')] \\&\quad = (m'-m)\alpha \Big ( W_{i,i}^{(2)}(m+m') + W_{j,j}^{(2)}(m+m') \Big ) + P \end{aligned}$$

    for \(i \ne j\), where P is an element of \({\mathfrak {U}}({\mathcal {W}}^{\kappa }({\mathfrak {g}},f))\) which is generated by \(W_{a,b}^{(1)}(m'')\) and \(W_{c,d}^{(2)}(m''')\) for various \(a,b,c,d,m'',m'''\) with \(c \ne d\). Hence, under the assumption \(\alpha \ne 0\), we see that all the elements of the form \(W_{i,i}^{(2)}(m) + W_{j,j}^{(2)}(m)\) for \(i \ne j\) and \(m \in {\mathbb {Z}}\) belong to the image of \(\Phi _{l}\). Thus, \(W_{i,i}^{(2)}(m)\) for any i and m belong to the image of \(\Phi _{l}\) since so do \(W_{i,i}^{(2)}(m) - W_{j,j}^{(2)}(m)\).

\(\square \)

Assume \(\alpha \ne 0\). Let us prove the surjectivity of \(\Phi _{l}\), the latter statement of Theorem 9.2. By (9.1) with the commutation relation (4.4), we see that the image of \(\Phi _{l}\) contains \(W_{i,j}^{(1)}(m)\) and \(W_{i,i}^{(1)}(m)-W_{j,j}^{(1)}(m)\) for \(i \ne j\) and \(m \in {\mathbb {Z}}\). The image of \(\Phi _{l}\) contains \(W_{i,i}^{(1)}(0)\) for any i since we have

$$\begin{aligned} \Phi _{l} \left( \sum _{i=0}^{n-1} H_{i,1} + \dfrac{\hbar }{2} \sum _{i=1}^{n-1} i H_{i,0} - \dfrac{\hbar }{2} \sum _{i=0}^{n-1} H_{i,0}^{2} \right) = (-\hbar ) \left( -\alpha W_{n,n}^{(1)}(0) - \dfrac{(l\alpha )^2}{2} \right) .\nonumber \\ \end{aligned}$$
(A.1)

We show that the image of \(\Phi _{l}\) contains \(W_{i,i}^{(1)}(m)\) for any i and \(m \ne 0\). The formula (11.1) for \(i = 0\) shows that the image of \(\Phi _{l}\) contains

$$\begin{aligned} \begin{aligned} H'&= W_{n,n}^{(2)}(0) - W_{1,1}^{(2)}(0) + W_{n,n}^{(1)}(0) \Big ( W_{1,1}^{(1)}(0) - \alpha \Big ) \\&\quad - \sum _{m' \ge 0} \left( W_{n,n}^{(1)}(-m') W_{n,n}^{(1)}(m') - W_{1,1}^{(1)}(-m'-1) W_{1,1}^{(1)}(m'+1) \right) . \end{aligned} \end{aligned}$$

Hence, the assertion follows from

$$\begin{aligned} {[}H', W_{1,1}^{(1)}(m)-W_{2,2}^{(1)}(m)] = -m\alpha W_{1,1}^{(1)}(m). \end{aligned}$$
(A.2)

If \(l=1\), this completes the proof. Suppose \(l \ge 2\). By Proposition 9.3 together with the fact that the image of \(\Phi _{l}\) contains \(W_{i,j}^{(1)}(m)\) for any ijm, the image of \(\Phi _{l}\) contains

$$\begin{aligned} \left\{ W_{n,1}^{(r)}(1),\ W_{1,n}^{(r)}(-1),\ W_{i,i+1}^{(r)}(0),\ W_{i+1,i}^{(r)}(0) \mid r=1,2 \text { and } i=1,\ldots ,n-1 \right\} . \end{aligned}$$

The proof is complete by Proposition  A.2.

Remark A.3

A proof of the surjectivity of \(\Phi _{1} = {{\,\mathrm{ev}\,}}\) was initially given by the first named author in [24] by a different method. The above argument, just computing (A.2), supplies a much simpler proof (the computation of (A.1) for \(l=1\) has already appeared in [24]).

Appendix B

Lemma B.1

We have

$$\begin{aligned} \begin{aligned} {[}W_{i,i}^{(2)}(0),W_{j,j}^{(2)}(0)]&= - W_{i,i}^{(2)}(0) + W_{j,j}^{(2)}(0)\\&\quad + \sum _{m \ge 0} \Big ( W_{i,j}^{(2)} (-m) W_{j,i}^{(1)} (m) + W_{j,i}^{(1)} (-m-1) W_{i,j}^{(2)} (m+1) \Big ) \\&\quad - \sum _{m \ge 0} \Big ( W_{j,i}^{(2)} (-m) W_{i,j}^{(1)} (m) + W_{i,j}^{(1)} (-m-1) W_{j,i}^{(2)} (m+1) \Big )\\&\quad + (l-1)\alpha \sum _{m \ge 1} m \Big ( W_{j,i}^{(1)} (-m) W_{i,j}^{(1)} (m) - W_{i,j}^{(1)} (-m) W_{j,i}^{(1)} (m) \Big )\\&\quad + (l-1) \sum _{m \ge 1} m \Big ( W_{i,i}^{(1)} (-m) W_{j,j}^{(1)} (m) - W_{j,j}^{(1)} (-m) W_{i,i}^{(1)} (m) \Big ). \end{aligned} \end{aligned}$$

Lemma B.2

For \(i < j\), we have

$$\begin{aligned} \begin{aligned} {[}W_{i,i}^{(2)}(0), A_{j}+B_{j}]&= \sum _{m \ge 0} \Big ( -W_{j,i}^{(2)}(-m) W_{i,j}^{(1)}(m) + W_{j,i}^{(1)}(-m) W_{i,j}^{(2)}(m) \Big )\\&\quad + (l-1)\alpha \sum _{m \ge 1} m W_{j,i}^{(1)}(-m) W_{i,j}^{(1)}(m) \\&\quad + (l-1) \sum _{m \ge 1} m \Big ( W_{i,i}^{(1)}(-m) W_{j,j}^{(1)}(m) - W_{j,j}^{(1)}(-m) W_{i,i}^{(1)}(m) \Big ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} {[}W_{j,j}^{(2)}(0), A_{i}+B_{i}]= & {} \sum _{m \ge 0} \Big ( -W_{i,j}^{(2)}(-m-1) W_{j,i}^{(1)}(m+1) + W_{i,j}^{(1)}(-m-1) W_{j,i}^{(2)}(m+1) \Big )\\&+ (l-1)\alpha \sum _{m \ge 1} m W_{i,j}^{(1)}(-m) W_{j,i}^{(1)}(m) \\&+ (l-1) \sum _{m \ge 1} m \Big ( W_{j,j}^{(1)}(-m) W_{i,i}^{(1)}(m) - W_{i,i}^{(1)}(-m) W_{j,j}^{(1)}(m) \Big ). \end{aligned}$$

Proof of Proposition11.1

We may assume \(i < j\). Then, by Lemma B.1, B.2, and (11.2), we have

$$\begin{aligned} \begin{aligned} {[}D_{i}, D_{j}]&= [W_{i,i}^{(2)}(0), W_{j,j}^{(2)}(0)] - [W_{i,i}^{(2)}(0), A_{j}+B_{j}] + [W_{j,j}^{(2)}(0), A_{i}+B_{i}] \\&\quad + [A_{i}+B_{i},A_{j}+B_{j}] \\&= - W_{i,i}^{(2)}(0) + W_{j,j}^{(2)}(0) + W_{i,j}^{(2)}(0) W_{j,i}^{(1)}(0) - W_{j,i}^{(1)}(0) W_{i,j}^{(2)}(0) \\&= - W_{i,i}^{(2)}(0) + W_{j,j}^{(2)}(0) + [W_{i,j}^{(2)}(0), W_{j,i}^{(1)}(0)]. \end{aligned} \end{aligned}$$

This is equal to 0 by Lemma  A.1. \(\square \)

Appendix C

The equality (11.2) is deduced from the following. We omit its proof.

Lemma C.1

For \(i < j\), we have

$$\begin{aligned} {[}A_{i}, A_{j}]= & {} \sum _{\begin{array}{c} m,m' \ge 0\\ m-m'>0 \end{array}} \sum _{a=1}^{i-1} \Big ( W_{j,a}^{(1)}(-m') W_{i,j}^{(1)}(-m+m') W_{a,i}^{(1)}(m) \\&- W_{i,a}^{(1)}(-m) W_{j,i}^{(1)}(m-m') W_{a,j}^{(1)}(m') \Big ),\\ {[}A_{i}, B_{j}]= & {} 0,\\ {[}B_{i}, A_{j}]= & {} \sum _{m,m' \ge 0} \Bigg ( \sum _{a=1}^{i-1} \Big ( -W_{j,a}^{(1)}(-m') W_{i,j }^{(1)}(-m-1) W_{a,i}^{(1)}(m+m'+1) \\&+ W_{i,a}^{(1)}(-m-m'-1) W_{j,i}^{(1)}(m+1) W_{a,j}^{(1)}(m') \Big )\\&+ \sum _{a=j}^{n} \Big ( -W_{j,a}^{(1)}(-m-m'-1) W_{i,j}^{(1)}(m') W_{a,i}^{(1)}(m+1) \\&+ W_{i,a}^{(1)}(-m-1) W_{j,i}^{(1)}(-m') W_{a,j}^{(1)}(m+m'+1) \Big ) \Bigg )\\&+ \sum _{m \ge 1} m \Big ( -W_{i,i}^{(1)}(-m) W_{j,j}^{(1)}(m) + W_{j,j}^{(1)}(-m) W_{i,i}^{(1)}(-m) \Big ),\\ {[}B_{i}, B_{j}]= & {} \sum _{\begin{array}{c} m,m' \ge 0\\ -m+m' \ge 0 \end{array}} \sum _{a=j}^{n} \Big ( W_{j,a}^{(1)}(-m'-1) W_{i,j}^{(1)}(-m+m') W_{a,i}^{(1)}(m+1) \\&- W_{i,a}^{(1)}(-m-1) W_{j,i}^{(1)}(m-m') W_{a,j}^{(1)}(m'+1) \Big )\\&+ l \sum _{m \ge 1} m \Big ( W_{i,i}^{(1)}(-m) W_{j,j}^{(1)}(m) - W_{j,j}^{(1)}(-m) W_{i,i}^{(1)}(-m) \Big ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodera, R., Ueda, M. Coproduct for affine Yangians and parabolic induction for rectangular W-algebras. Lett Math Phys 112, 3 (2022). https://doi.org/10.1007/s11005-021-01500-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01500-3

Keywords

Mathematics Subject Classification

Navigation