Skip to main content
Log in

A solvable tensor field theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We solve the closed Schwinger–Dyson equation for the 2-point function of a tensor field theory with a quartic melonic interaction, in terms of Lambert’s W function, using a perturbative expansion and Lagrange–Bürmann resummation. Higher-point functions are then obtained recursively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Not to be confused with tensor fields living on a space-time such as in [4].

  2. We computed the expansion up to order 9 in the coupling using Mathematica.

References

  1. Ben Geloun, J., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69–109 (2013). https://doi.org/10.1007/s00220-012-1549-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ben Geloun, J., Rivasseau, V.: A renormalizable SYK-type tensor field theory. Ann. Henri Poincare 19(11), 3357–3395 (2018). https://doi.org/10.1007/s00023-018-0712-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Benedetti, D., Carrozza, S., Gurau, R., Kolanowski, M.: The \(1/N\) expansion of the symmetric traceless and the antisymmetric tensor models in rank three. Commun. Math. Phys. 371, 55–97 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Benedetti, D., Gurau, R.: 2PI effective action for the SYK model and tensor field theories. JHEP 05, 156 (2018). https://doi.org/10.1007/JHEP05(2018)156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bonzom, V., Dartois, S.: Blobbed topological recursion for the quartic melonic tensor model. J. Phys. A 51(32), 325201 (2018). https://doi.org/10.1088/1751-8121/aac8e7

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonzom, V., Lionni, L., Tanasa, A.: Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders. J. Math. Phys. 58(5), 052301 (2017). https://doi.org/10.1063/1.4983562

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bürmann, H.: Essai de calcul fonctionnaire aux constantes ad-libitum. Mem. Inst. Nat. Sci Arts. Sci. Math. Phys. 2, 316–347 (1799)

    Google Scholar 

  8. Carrozza, S.: Tensorial Methods and Renormalization in Group Field Theories. Ph.D. thesis, Orsay, LPT (2014). https://doi.org/10.1007/978-3-319-05867-2

  9. Carrozza, S.: Flowing in group field theory space: a review. SIGMA 12, 070 (2016). https://doi.org/10.3842/SIGMA.2016.070

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrozza, S., Tanasa, A.: \(O(N)\) random tensor models. Lett. Math. Phys. 106(11), 1531–1559 (2016). https://doi.org/10.1007/s11005-016-0879-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the LambertW function. Adv. Comput. Math. 5(1), 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  12. Delporte, N., Rivasseau, V.: The tensor track V: holographic tensors (2018). arXiv:1804.11101

  13. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative Phi**4(4) theory to all orders. Phys. Lett. B 649, 95–102 (2007). https://doi.org/10.1016/j.physletb.2007.04.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Eichhorn, A., Koslowski, T., Lumma, J., Pereira, A.D.: Towards background independent quantum gravity with tensor models. Class. Quantum Gravity (2018). https://doi.org/10.1088/1361-6382/ab2545

  15. Eichhorn, A., Koslowski, T., Pereira, A.D.: Status of background-independent coarse-graining in tensor models for quantum gravity. Universe 5(2), 53 (2019). https://doi.org/10.3390/universe5020053

    Article  ADS  Google Scholar 

  16. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1994)

    MATH  Google Scholar 

  17. Gross, D.J., Rosenhaus, V.: All point correlation functions in SYK. JHEP 12, 148 (2017). https://doi.org/10.1007/JHEP12(2017)148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \(\phi ^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329, 1069–1130 (2014). https://doi.org/10.1007/s00220-014-1906-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69–93 (2011). https://doi.org/10.1007/s00220-011-1226-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gurau, R.: Random Tensors. Oxford University Press, Oxford (2017)

    MATH  Google Scholar 

  21. Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386–401 (2017). https://doi.org/10.1016/j.nuclphysb.2017.01.015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kitaev, A.: A simple model of quantum holography. Talk at KITP. http://online.kitp.ucsb.edu/online/entangled15/kitaev/; http://online.kitp.ucsb.edu/online/entangled15/kitaev2/

  23. Klebanov, I.R., Popov, F., Tarnopolsky, G.: TASI lectures on large \(N\) tensor models. In: Theoretical Advanced Study Institute in Elementary Particle Physics: Physics at the Fundamental Frontier (TASI 2017) Boulder, CO, USA, June 5–30, 2017 (2018)

  24. Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models. Phys. Rev. D 95(4), 046004 (2017). https://doi.org/10.1103/PhysRevD.95.046004

    Article  ADS  MathSciNet  Google Scholar 

  25. Krajewski, T., Toriumi, R.: Exact renormalisation group equations and loop equations for tensor models. SIGMA 12, 068 (2016). https://doi.org/10.3842/SIGMA.2016.068

    Article  MathSciNet  MATH  Google Scholar 

  26. Lagrange, J.L.: Nouvelle méthode pour résoudre des équations littérales par le moyen de séries. Mém. Acad. R. Sci. B.-Lett. Berlin 24 (1770)

  27. Maldacena, J., Stanford, D.: Remarks on the Sachdev–Ye–Kitaev model. Phys. Rev. D 94(10), 106002 (2016). https://doi.org/10.1103/PhysRevD.94.106002

    Article  ADS  MathSciNet  Google Scholar 

  28. Ousmane Samary, D., Pérez-Sánchez, C.I., Vignes-Tourneret, F., Wulkenhaar, R.: Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation. Class. Quantum Grav. 32(17), 175012 (2015). https://doi.org/10.1088/0264-9381/32/17/175012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Panzer, E., Wulkenhaar, R.: Lambert-W solves the noncommutative \(\varPhi ^4\)-model (2018). arXiv:1807.02945

  30. Pascalie, R., Pérez-Sánchez, C.I., Tanasa, A., Wulkenhaar, R.: On the large N limit of the Schwinger–Dyson equation of tensor field theory. J. Math. Phys. 60, 073502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Pascalie, R., Sánchez, C.I.P., Wulkenhaar, R.: Correlation functions of coloured tensor models and their Schwinger–Dyson equations (2017). arXiv:1706.07358

  32. Pérez-Sánchez, C.I.: Graph calculus and the disconnected-boundary Schwinger-Dyson equations in tensor field theory (2018)

  33. Pérez-Sánchez, C.I.: The full Ward–Takahashi Identity for colored tensor models. Commun. Math. Phys. 358(2), 589–632 (2018). https://doi.org/10.1007/s00220-018-3103-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Sachdev, S., Ye, J.: Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). ArXiv:cond-mat/9212030

  35. Samary, D.O.: Closed equations of the two-point functions for tensorial group field theory. Class. Quantum Grav. 31, 185005 (2014). https://doi.org/10.1088/0264-9381/31/18/185005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Witten, E.: An SYK-like model without disorder. J. Phys. A: Math. Theor. 52, 474002 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Raimar Wulkenhaar for his guidance throughout this project, Adrian Tanasa for his advice and comments on the manuscript and Alexander Hock for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Pascalie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure and partially supported by the CNRS Infiniti ModTens Grant.

Appendix A: Recurrence relations

Appendix A: Recurrence relations

In this section, we will use the recursive equation (11) to determine recurrence relations on the numbers \(a_{n,k,m}\). We first perform the integration

$$\begin{aligned} \int \mathrm {d}\mathbf {q}_{\hat{1}} G^{(2)}_p(\mathbf {q}_{\hat{1}}x_1)&= -\frac{\pi }{4}\log (1+x_1^2) \quad \text {if} \,\, p=0, \end{aligned}$$
(42)
$$\begin{aligned}&= \bigg (\frac{\pi }{2}\bigg )^{p+1}\Bigg (\frac{\log ^p(1+x_1^2)}{2p(1+x_1^2)^p}+\frac{(-1)^p}{2(1+x_1^2)^p}\nonumber \\&\qquad \sum \limits _{r=1}^{p-1}(-1)^r\log ^r(1+x_1^2)\sum \limits _{m=1}^{r}\frac{a_{p,r,m}}{m} \Bigg ) \quad \text {if} \,\, p>0, \end{aligned}$$
(43)

where for \(p=1\) the sum on r does not appear. Plugging back the ansatz (19) in the recurrence relation (11) with \(c=1\) gives

$$\begin{aligned} G^{(2)}_{n}(\mathbf {x})&= -\frac{2}{|\mathbf {x}|^2+1}\Bigg \{-\frac{\pi }{4}\log (1+x_1^2)G^{(2)}_{n-1}(\mathbf {x})\nonumber \\&\quad + \sum \limits _{p=1}^{n-1}\bigg (\frac{\pi }{2}\bigg )^{p+1}\frac{\log ^p(1+x_1^2)}{2p(1+x_1^2)^p} G^{(2)}_{n-p-1}(\mathbf {x}) \nonumber \\&\quad + \sum \limits _{p=2}^{n-1}\bigg (\frac{\pi }{2}\bigg )^{p+1}\bigg (\frac{(-1)^p}{2(1+x_1^2)^p}\nonumber \\&\quad \sum \limits _{r=1}^{p-1}(-1)^r\log ^r(1+x_1^2)\sum \limits _{m=1}^{r}\frac{a_{p,r,m}}{m} \Bigg )G^{(2)}_{n-p-1}(\mathbf {x})\Bigg \}. \end{aligned}$$
(44)

The first term of (44) gives

$$\begin{aligned}&\frac{\pi \log (1+x_1^2)}{2(|\mathbf {x}|^2+1)}\bigg (\frac{\pi }{2}\bigg )^{n-1}\Bigg (\frac{\log ^{n-1}(1+x_1^2)}{(1+|\mathbf {x}|^2)^{n}}\nonumber \\&\quad +\frac{(-1)^{n-1}}{(1+x_1^2)^{n-1}}\sum \limits _{k=1}^{n-2}(-1)^k\log ^k(1+x_1^2)\sum \limits _{m=1}^k a_{n-1,k,m}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+1}}\Bigg ) \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\Bigg (\frac{\log ^{n}(1+x_1^2)}{(1+|\mathbf {x}|^2)^{n+1}}+\frac{(-1)^{n-1}}{(1+x_1^2)^{n-1}}\sum \limits _{k=1}^{n-2}(-1)^k\nonumber \\&\qquad \log ^{k+1}(1+x_1^2)\sum \limits _{m=1}^k a_{n-1,k,m}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+2}}\Bigg ) \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\Bigg (\frac{\log ^{n}(1+x_1^2)}{(1+|\mathbf {x}|^2)^{n+1}}+\frac{(-1)^{n}}{(1+x_1^2)^{n}}\nonumber \\&\qquad \sum \limits _{k=2}^{n-1}(-1)^k\log ^{k}(1+x_1^2)\sum \limits _{m=2}^k a_{n-1,k-1,m-1}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+1}}\Bigg ), \end{aligned}$$
(45)

where we sent \(k \rightarrow k+1\) and \(m \rightarrow m+1\) to get to the last line. The second term of (44) gives

$$\begin{aligned}&-\frac{2}{|\mathbf {x}|^2+1}\Bigg (\sum \limits _{p=1}^{n-1}\bigg (\frac{\pi }{2}\bigg )^{p+1}\frac{\log ^p(1+x_1^2)}{2p(1+x_1^2)^p} \bigg (\frac{\pi }{2}\bigg )^{n-p-1}\frac{\log ^{n-p-1}(1+x_1^2)}{(1+|\mathbf {x}|^2)^{n-p}} \nonumber \\&\quad +\sum \limits _{p=1}^{n-3}\bigg (\frac{\pi }{2}\bigg )^{p+1}\frac{\log ^p(1+x_1^2)}{2p(1+x_1^2)^p}\bigg (\frac{\pi }{2}\bigg )^{n-p-1}\frac{(-1)^{n-p-1}}{(1+x_1^2)^{n-p-1}}\nonumber \\&\quad \sum \limits _{k=1}^{n-p-2}(-1)^k\log ^k(1+x_1^2)\sum \limits _{m=1}^k a_{n-p-1,k,m}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+1}}\Bigg ) \nonumber \\&\quad =-\bigg (\frac{\pi }{2}\bigg )^{n}\frac{\log ^{n-1}(1+x_1^2)}{(1+x_1^2)^{n}} \sum \limits _{p=1}^{n-1}\frac{1}{p}\frac{(1+x_1^2)^{n-p}}{(1+|\mathbf {x}|^2)^{n-p+1}} \nonumber \\&\quad +\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{p=1}^{n-3}\nonumber \\&\quad \sum \limits _{k=1}^{n-p-2}(-1)^{k-p}\log ^{p+k}(1+x_1^2)\sum \limits _{m=1}^k \frac{a_{n-p-1,k,m}}{p}\frac{(1+x_1^2)^{m+1}}{(1+|\mathbf {x}|^2)^{m+2}}. \end{aligned}$$
(46)

Setting \(r=p+k\) in the line of the previous equation, let us rewrite the double sum as

$$\begin{aligned} \sum \limits _{k=1}^{n-3}\sum \limits _{r=k+1}^{n-2}\frac{(-1)^{r}}{r-k}\log ^{r}(1+x_1^2)a_{n-r+k-1,k,m} = \sum \limits _{r=2}^{n-2}\sum \limits _{k=1}^{r-1}\frac{(-1)^{r}}{r-k}\log ^{r}(1+x_1^2)a_{n-r+k-1,k,m}. \end{aligned}$$
(47)

Then, we send \(m \rightarrow m+1\) and rewrite double sum to get

$$\begin{aligned} \sum \limits _{k=1}^{r-1}\sum \limits _{m=2}^{k+1} \frac{a_{n-r+k-1,k,m-1}}{r-k}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+1}} = \sum \limits _{m=2}^{r}\sum \limits _{k=m-1}^{r-1} \frac{a_{n-r+k-1,k,m-1}}{r-k}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+1}}. \end{aligned}$$
(48)

Hence, sending \(p \rightarrow n-p\) and collecting the results, we get

$$\begin{aligned}&-\bigg (\frac{\pi }{2}\bigg )^{n}\frac{\log ^{n-1}(1+x_1^2)}{(1+x_1^2)^{n}} \sum \limits _{p=1}^{n-1}\frac{1}{n-p}\frac{(1+x_1^2)^{p}}{(1+|\mathbf {x}|^2)^{p+1}} \nonumber \\&\quad +\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{r=2}^{n-2}(-1)^{r}\log ^{r}(1+x_1^2)\nonumber \\&\quad \sum \limits _{m=2}^{r}\sum \limits _{k=m-1}^{r-1} \frac{a_{n-1+k-r,k,m-1}}{r-k}\frac{(1+x_1^2)^{m}}{(1+|\mathbf {x}|^2)^{m+1}}. \end{aligned}$$
(49)

The third term of (44) gives

$$\begin{aligned}&-\frac{2}{|\mathbf {x}|^2+1}\Bigg \{\sum \limits _{p=2}^{n-1}\bigg (\frac{\pi }{2}\bigg )^{p+1}\Bigg (\frac{(-1)^p}{2(1+x_1^2)^p}\sum \limits _{r=1}^{p-1}(-1)^r\nonumber \\&\quad \log ^r(1+x_1^2)\sum \limits _{m=1}^{r}\frac{a_{p,r,m}}{m} \Bigg )\bigg (\frac{\pi }{2}\bigg )^{n-p-1}\frac{\log ^{n-p-1}(1+x_1^2)}{(1+|\mathbf {x}|^2)^{n-p}} \nonumber \\&\quad +\sum \limits _{p=2}^{n-3}\bigg (\frac{\pi }{2}\bigg )^{p+1}\Bigg (\frac{(-1)^p}{2(1+x_1^2)^p}\sum \limits _{r=1}^{p-1}(-1)^r\log ^r(1+x_1^2)\sum \limits _{m=1}^{r}\frac{a_{p,r,m}}{m} \Bigg ) \nonumber \\&\quad \bigg (\frac{\pi }{2}\bigg )^{n-p-1}\frac{(-1)^{n-p-1}}{(1+x_1^2)^{n-p-1}}\nonumber \\&\quad \sum \limits _{k=1}^{n-p-2}(-1)^k\log ^k(1+x_1^2)\sum \limits _{l=1}^k a_{n-p-1,k,l}\frac{(1+x_1^2)^{l}}{(1+|\mathbf {x}|^2)^{l+1}}\Bigg )\Bigg \}. \end{aligned}$$
(50)

The first term of Eq. (50) gives

$$\begin{aligned}&-\bigg (\frac{\pi }{2}\bigg )^{n} \sum \limits _{p=2}^{n-1}\sum \limits _{r=1}^{p-1}(-1)^{p+r}\frac{\log ^{n-p+r-1}(1+x_1^2)}{(1+x_1^2)^n}\sum \limits _{m=1}^{r}\frac{a_{p,r,m}}{m}\frac{(1+x_1^2)^{n-p}}{(1+|\mathbf {x}|^2)^{n-p+1}} \nonumber \\&\quad =-\bigg (\frac{\pi }{2}\bigg )^{n} \sum \limits _{r=1}^{n-2}\sum \limits _{k=1}^{n-1-r}(-1)^k\frac{\log ^{n-k-1}(1+x_1^2)}{(1+x_1^2)^n}\sum \limits _{m=1}^{r}\frac{a_{r+k,r,m}}{m}\frac{(1+x_1^2)^{n-r-k}}{(1+|\mathbf {x}|^2)^{n-r-k+1}}, \end{aligned}$$
(51)

by setting \(k=p-r\). Then, by setting \(l=n-1-k\) and rewriting the sums, we get

$$\begin{aligned}&\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{r=1}^{n-2}\sum \limits _{l=r}^{n-2}(-1)^l\log ^{l}(1+x_1^2)\nonumber \\&\quad \sum \limits _{m=1}^{r}\frac{a_{n-1+r-l,r,m}}{m}\frac{(1+x_1^2)^{l-r+1}}{(1+|\mathbf {x}|^2)^{l-r+2}} \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{l=1}^{n-2}(-1)^l\log ^{l}(1+x_1^2)\nonumber \\&\quad \sum \limits _{r=1}^{l}\sum \limits _{m=1}^{r}\frac{a_{n-1+r-l,r,m}}{m}\frac{(1+x_1^2)^{l-r+1}}{(1+|\mathbf {x}|^2)^{l-r+2}}. \end{aligned}$$
(52)

Then, we set \(k = l-r+1\) and obtain

$$\begin{aligned} \bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{l=1}^{n-2}(-1)^l\log ^{l}(1+x_1^2)\sum \limits _{k=1}^{l}\sum \limits _{m=1}^{l-k+1}\frac{a_{n-k,l-k+1,m}}{m}\frac{(1+x_1^2)^{k}}{(1+|\mathbf {x}|^2)^{k+1}}. \end{aligned}$$
(53)

The second term of (50) gives, by rewriting the sums,

$$\begin{aligned}&\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{p=2}^{n-3}\sum \limits _{k=1}^{n-p-2}\sum \limits _{r=1}^{p-1}(-1)^{k+r}\log ^{k+r}(1+x_1^2)\nonumber \\&\quad \sum \limits _{l=1}^k\sum \limits _{m=1}^{r}\frac{a_{p,r,m}}{m} a_{n-p-1,k,l}\frac{(1+x_1^2)^{l+1}}{(1+|\mathbf {x}|^2)^{l+2}} \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{r=1}^{n-4}\sum \limits _{k=1}^{n-3-r}(-1)^{k+r}\log ^{r+k}(1+x_1^2)\nonumber \\&\quad \sum \limits _{l=1}^{k}\sum \limits _{m=1}^{r}\sum \limits _{p=r+1}^{n-2-k}\frac{a_{p,r,m}}{m} a_{n-p-1,k,l}\frac{(1+x_1^2)^{l+1}}{(1+|\mathbf {x}|^2)^{l+2}}. \end{aligned}$$
(54)

First by setting \(q=k+r\) and by several rewriting of the sums, we get

$$\begin{aligned}&\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{k=1}^{n-4}\sum \limits _{q=k+1}^{n-3}(-1)^q\log ^{q}(1+x_1^2)\sum \limits _{l=1}^{k}\sum \limits _{m=1}^{q-k}\nonumber \\&\quad \sum \limits _{p=q-k+1}^{n-2-k}\frac{a_{p,q-k,m}}{m} a_{n-p-1,k,l}\frac{(1+x_1^2)^{l+1}}{(1+|\mathbf {x}|^2)^{l+2}} \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{q=2}^{n-3}(-1)^q\log ^{q}(1+x_1^2)\sum \limits _{k=1}^{q-1}\sum \limits _{l=1}^{k}\sum \limits _{m=1}^{q-k}\nonumber \\&\quad \sum \limits _{p=q-k+1}^{n-2-k}\frac{a_{p,q-k,m}}{m} a_{n-p-1,k,l}\frac{(1+x_1^2)^{l+1}}{(1+|\mathbf {x}|^2)^{l+2}} \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{q=2}^{n-3}(-1)^q\log ^{q}(1+x_1^2)\sum \limits _{l=1}^{q-1}\sum \limits _{k=l}^{q-1}\sum \limits _{m=1}^{q-k}\nonumber \\&\quad \sum \limits _{p=q-k+1}^{n-2-k}\frac{a_{p,q-k,m}}{m} a_{n-p-1,k,l}\frac{(1+x_1^2)^{l+1}}{(1+|\mathbf {x}|^2)^{l+2}} \nonumber \\&\quad =\bigg (\frac{\pi }{2}\bigg )^{n}\frac{(-1)^n}{(1+x_1^2)^n}\sum \limits _{q=2}^{n-3}(-1)^q\log ^{q}(1+x_1^2)\sum \limits _{l=2}^{q}\sum \limits _{k=l-1}^{q-1}\sum \limits _{m=1}^{q-k}\nonumber \\&\quad \sum \limits _{p=q-k+1}^{n-2-k}\frac{a_{p,q-k,m}}{m} a_{n-p-1,k,l-1}\frac{(1+x_1^2)^{l}}{(1+|\mathbf {x}|^2)^{l+1}}, \end{aligned}$$
(55)

where we send \(l \rightarrow l+1\) in the last line.

Now, collecting all the results, we obtain recurrence relations on \(a_{n,k,m}\):

$$\begin{aligned}&a_{n,1,1} = a_{n-1,1,1}, \end{aligned}$$
(56)
$$\begin{aligned}&a_{n,n-1,1} = \frac{1}{n-1}, \end{aligned}$$
(57)
$$\begin{aligned}&a_{n,n-1,m} = \frac{1}{n-m} + a_{n-1,n-2,m-1}, \quad \text {for} \,\, m \in \llbracket 2,n-1 \rrbracket , \end{aligned}$$
(58)
$$\begin{aligned}&a_{n,n-2,m} = a_{n-1,n-3,m-1} + \sum \limits _{r=m-1}^{n-3} \frac{a_{r+1,r,m-1}}{n-2-r} + \sum \limits _{l=1}^{n-1-m} \frac{a_{n-m,n-1-m,l}}{l}, \end{aligned}$$
(59)
$$\begin{aligned}&\quad \text {for} \,\, m \in \llbracket 2,n-2 \rrbracket , \nonumber \\&a_{n,k,1} = \sum \limits _{l=1}^{k} \frac{a_{n-1,k,l}}{l}, \quad \text {for} \,\, k \in \llbracket 1,n-3 \rrbracket , \end{aligned}$$
(60)
$$\begin{aligned}&a_{n,k,m} = a_{n-1,k-1,m-1} + \sum \limits _{r=m-1}^{k-1} \frac{a_{n-1+r-k,r,m-1}}{k-r} + \sum \limits _{l=1}^{k-m+1} \frac{a_{n-m,k-m+1,l}}{l} \nonumber \\&+ \sum \limits _{r=m-1}^{k-1}\sum \limits _{l=1}^{k-r}\sum \limits _{p=k-r+1}^{n-2-r}\frac{a_{p,k-r,l}a_{n-p-1,r,m-1}}{l}, \quad \text {for} \,\, k \in \llbracket 2,n-3 \rrbracket \,\, \text {and} \,\, m \in \llbracket 2,k \rrbracket . \end{aligned}$$
(61)

Rewriting these equations gives explicit relations on Stirling numbers of the first kind, harmonic numbers and binomial coefficients. Indeed, from Eq. (60), we recover

$$\begin{aligned} \frac{1}{(n-1)!} \genfrac[]{0.0pt}{}{n-1}{n-k} = \sum _{l=1}^k \frac{1}{(n-l)!} \genfrac[]{0.0pt}{}{n-1-l}{n-1-k}, \quad \text {for} \,\, k \in \llbracket 1,n-3 \rrbracket , \end{aligned}$$
(62)

which corresponds to equation (6.21) in [16].

Setting \(l=n-2-r \), \(k = n-m-1 \) and sending \(n-3 \rightarrow n\), Eq. (59) gives

$$\begin{aligned} H_k = \frac{k+1}{2n+3-k}\sum \limits _{l=1}^{k} \frac{n+1-k+l}{l(k+1-l)}, \quad \text {for} \,\, k \in \llbracket 1,n \rrbracket . \end{aligned}$$
(63)

Sending \(r \rightarrow k-l\) and in the last term \(l \rightarrow r\) of Eq. (61), we get

$$\begin{aligned}&((n-1)m-k(m-1))\frac{(n-2)!}{k!(n-m)!}\genfrac[]{0.0pt}{}{n-m}{n-k} \nonumber \\&\quad = \sum \limits _{l=1}^{k-m+1} \frac{1}{(n-m-l)!}\genfrac[]{0.0pt}{}{n-m-l}{n-k-1}\Bigg (\frac{(n-1-m)!}{(k-m+1)!}+\frac{m-1}{l}\frac{(n-l-2)!}{(k-l)!} \Bigg ) \nonumber \\&\quad + \sum \limits _{l=1}^{k-m+1} \frac{m-1}{l!(k-l)!} \sum \limits _{p=l+1}^{n-2-k+l}\frac{(p-1)!(n-2-p)!}{(n-m-p)!}\nonumber \\&\quad \genfrac[]{0.0pt}{}{n-m-p}{n-k-1-p+l}\sum _{r=1}^l\frac{1}{(p-r)!}\genfrac[]{0.0pt}{}{p-r}{p-l}, \end{aligned}$$
(64)

for \(k \in \llbracket 2,n-3 \rrbracket \) and \(m \in \llbracket 2,k \rrbracket \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascalie, R. A solvable tensor field theory. Lett Math Phys 110, 925–943 (2020). https://doi.org/10.1007/s11005-019-01245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01245-0

Keywords

Mathematics Subject Classification

Navigation