Optimal lattice configurations for interacting spatially extended particles

Article

Abstract

We investigate lattice energies for radially symmetric, spatially extended particles interacting via a radial potential and arranged on the sites of a two-dimensional Bravais lattice. We show the global minimality of the triangular lattice among Bravais lattices of fixed density in two cases: In the first case, the distribution of mass is sufficiently concentrated around the lattice points, and the mass concentration depends on the density we have fixed. In the second case, both interacting potential and density of the distribution of mass are described by completely monotone functions in which case the optimality holds at any fixed density.

Keywords

Calculus of variations Lattice energy Triangular lattice Crystal 

Mathematics Subject Classification

Primary 74G65 Secondary 82B20 

Notes

Acknowledgements

LB is grateful for the support of the Mathematics Center Heidelberg (MATCH) during his stay in Heidelberg. He also acknowledges support from ERC advanced Grant Mathematics of the Structure of Matter (Project No. 321029) and from VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). HK is grateful about support from DFG Grant 392124319. The authors also thank the referees for their interesting suggestions and comments.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington DC (1964)MATHGoogle Scholar
  2. 2.
    Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Nonlocal interactions by repulsive–attractive potentials: radial ins/stability. Physica D 260, 5–25 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernoff, A.J., Topaz, C.M.: A primer of swarm equilibria. SIAM J. Appl. Dyn. Syst. 10(1), 212–250 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bétermin, L., Knüpfer, H.: On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal (2017, preprint). arXiv:1704.02887
  6. 6.
    Bétermin, L.: Local optimality of cubic lattices for interaction energies. Anal. Math. Phys. (2017, online first).  https://doi.org/10.1007/s13324-017-0205-5
  7. 7.
    Bétermin, L.: Local variational study of 2d lattice energies and application to Lennard–Jones type interactions (2016, preprint). arXiv:1611.07820
  8. 8.
    Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \({\mathbb{R}}^{2}\): Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Blanc, X.: Geometry optimization for crystals in Thomas–Fermi type theories of solids. Commun. Partial Differ. Equ. 26(3–4), 651–696 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Carrillo, J.A., Martin, S., Panferov, V.: A new interaction potential for swarming models. Physica D 260, 112–126 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Cassels, J.W.S.: On a problem of Rankin about the Epstein zeta-function. Proc. Glasg/ Math. Assoc. 4(73–80), 7 (1959)MathSciNetMATHGoogle Scholar
  16. 16.
    Chen, X., Oshita, Y.: An application of the modular function in nonlocal variational problems. Arch. Ration. Mech. Anal. 186(1), 109–132 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math. 69, 1712–1738 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math. 69(6), 1712–1738 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Cohn, H., Elkies, N.: New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185(3), 1017–1033 (2017)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Connett, W.C., Schwartz, A.L.: Fourier analysis off groups. Contemp. Math. 137, 169–176 (1992)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Coulangeon, R., Schürmann, A.: Energy minimization, periodic sets and spherical designs. Int. Math. Res. Not. IMRN 2012, 829–848 (2012)Google Scholar
  24. 24.
    De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Diananda, P.H.: Notes on two lemmas concerning the Epstein zeta-function. Proc. Glasg. Math. Assoc. 6(202–204), 7 (1964)MathSciNetMATHGoogle Scholar
  26. 26.
    Ennola, V.: A lemma about the Epstein zeta-function. Proc. Glasg. Math. Assoc. 6, 198–201 (1964)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Flatley, L., Theil, F.: Face-centred cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 219(1), 363–416 (2015)CrossRefMATHGoogle Scholar
  28. 28.
    Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamics of self assembly of magnetized disks rotating at the liquid–air interface. Proc. Natl. Acad. Sci. USA 99(7), 4147–4151 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Hardin, D.P., Saff, E.B., Simanek, B.: Periodic discrete energy for long-range potentials. J. Math. Phys. 55(12), 123509 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Heyes, D.M., Branka, A.C.: Lattice summations for spread out particles: applications to neutral and charged systems. J. Chem. Phys. 138(3), 034504 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Knüpfer, H., Muratov, C.B., Novaga, M.: Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345(1), 141–183 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Miller, K.S., Samko, S.G.: Completely monotonic functions. Integr. Transf. Spec. Funct. 12, 389–402 (2001)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Montgomery, H.L.: Minimal theta functions. Glasg. Math. J. 30(1), 75–85 (1988)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Nier, F.: A propos des fonctions Thêta et des réseaux d’Abrikosov. In: Séminaire EDP-Ecole Polytechnique (2006–2007)Google Scholar
  37. 37.
    Nonnenmacher, S., Voros, A.: Chaotic eigenfunctions in phase space. J. Stat. Phys. 92, 431–518 (1998)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    Rankin, R.A.: A minimum problem for the Epstein zeta-function. Proc. Glasg. Math. Assoc. 1, 149–158 (1953)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Sarnak, P., Strömbergsson, A.: Minima of Epstein’s Zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, Princeton, NJ, Princeton Mathematical Series, No. 32 (1971)Google Scholar
  43. 43.
    Süto, A.: Crystalline Ground States for Classical Particles. Phys. Rev. Lett. 95, 265501 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Süto, A.: Ground state at high density. Commun. Math. Phys. 305, 657–710 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (2004)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185(3), 991–1015 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.QMATH, Department of Mathematical SciencesUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Institute of Applied Mathematics and IWRUniversity of HeidelbergHeidelbergGermany

Personalised recommendations