Skip to main content
Log in

Optimal lattice configurations for interacting spatially extended particles

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate lattice energies for radially symmetric, spatially extended particles interacting via a radial potential and arranged on the sites of a two-dimensional Bravais lattice. We show the global minimality of the triangular lattice among Bravais lattices of fixed density in two cases: In the first case, the distribution of mass is sufficiently concentrated around the lattice points, and the mass concentration depends on the density we have fixed. In the second case, both interacting potential and density of the distribution of mass are described by completely monotone functions in which case the optimality holds at any fixed density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington DC (1964)

    MATH  Google Scholar 

  2. Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Nonlocal interactions by repulsive–attractive potentials: radial ins/stability. Physica D 260, 5–25 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bernoff, A.J., Topaz, C.M.: A primer of swarm equilibria. SIAM J. Appl. Dyn. Syst. 10(1), 212–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bétermin, L., Knüpfer, H.: On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal (2017, preprint). arXiv:1704.02887

  6. Bétermin, L.: Local optimality of cubic lattices for interaction energies. Anal. Math. Phys. (2017, online first). https://doi.org/10.1007/s13324-017-0205-5

  7. Bétermin, L.: Local variational study of 2d lattice energies and application to Lennard–Jones type interactions (2016, preprint). arXiv:1611.07820

  8. Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \({\mathbb{R}}^{2}\): Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blanc, X.: Geometry optimization for crystals in Thomas–Fermi type theories of solids. Commun. Partial Differ. Equ. 26(3–4), 651–696 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrillo, J.A., Martin, S., Panferov, V.: A new interaction potential for swarming models. Physica D 260, 112–126 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cassels, J.W.S.: On a problem of Rankin about the Epstein zeta-function. Proc. Glasg/ Math. Assoc. 4(73–80), 7 (1959)

    MathSciNet  MATH  Google Scholar 

  16. Chen, X., Oshita, Y.: An application of the modular function in nonlocal variational problems. Arch. Ration. Mech. Anal. 186(1), 109–132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math. 69, 1712–1738 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math. 69(6), 1712–1738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cohn, H., Elkies, N.: New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185(3), 1017–1033 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Connett, W.C., Schwartz, A.L.: Fourier analysis off groups. Contemp. Math. 137, 169–176 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Coulangeon, R., Schürmann, A.: Energy minimization, periodic sets and spherical designs. Int. Math. Res. Not. IMRN 2012, 829–848 (2012)

  24. De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Diananda, P.H.: Notes on two lemmas concerning the Epstein zeta-function. Proc. Glasg. Math. Assoc. 6(202–204), 7 (1964)

    MathSciNet  MATH  Google Scholar 

  26. Ennola, V.: A lemma about the Epstein zeta-function. Proc. Glasg. Math. Assoc. 6, 198–201 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Flatley, L., Theil, F.: Face-centred cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 219(1), 363–416 (2015)

    Article  MATH  Google Scholar 

  28. Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamics of self assembly of magnetized disks rotating at the liquid–air interface. Proc. Natl. Acad. Sci. USA 99(7), 4147–4151 (2002)

    Article  ADS  Google Scholar 

  29. Hardin, D.P., Saff, E.B., Simanek, B.: Periodic discrete energy for long-range potentials. J. Math. Phys. 55(12), 123509 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Heyes, D.M., Branka, A.C.: Lattice summations for spread out particles: applications to neutral and charged systems. J. Chem. Phys. 138(3), 034504 (2013)

    Article  ADS  Google Scholar 

  31. Knüpfer, H., Muratov, C.B., Novaga, M.: Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345(1), 141–183 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Miller, K.S., Samko, S.G.: Completely monotonic functions. Integr. Transf. Spec. Funct. 12, 389–402 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Montgomery, H.L.: Minimal theta functions. Glasg. Math. J. 30(1), 75–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nier, F.: A propos des fonctions Thêta et des réseaux d’Abrikosov. In: Séminaire EDP-Ecole Polytechnique (2006–2007)

  37. Nonnenmacher, S., Voros, A.: Chaotic eigenfunctions in phase space. J. Stat. Phys. 92, 431–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)

    Article  ADS  Google Scholar 

  39. Rankin, R.A.: A minimum problem for the Epstein zeta-function. Proc. Glasg. Math. Assoc. 1, 149–158 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Sarnak, P., Strömbergsson, A.: Minima of Epstein’s Zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, Princeton, NJ, Princeton Mathematical Series, No. 32 (1971)

  43. Süto, A.: Crystalline Ground States for Classical Particles. Phys. Rev. Lett. 95, 265501 (2005)

    Article  ADS  Google Scholar 

  44. Süto, A.: Ground state at high density. Commun. Math. Phys. 305, 657–710 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185(3), 991–1015 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

LB is grateful for the support of the Mathematics Center Heidelberg (MATCH) during his stay in Heidelberg. He also acknowledges support from ERC advanced Grant Mathematics of the Structure of Matter (Project No. 321029) and from VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). HK is grateful about support from DFG Grant 392124319. The authors also thank the referees for their interesting suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bétermin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétermin, L., Knüpfer, H. Optimal lattice configurations for interacting spatially extended particles. Lett Math Phys 108, 2213–2228 (2018). https://doi.org/10.1007/s11005-018-1077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1077-9

Keywords

Mathematics Subject Classification

Navigation