Skip to main content
Log in

Crystallization in Carbon Nanostructures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate ground state configurations for atomic potentials including both two- and three-body nearest-neighbor interaction terms. The aim is to prove that such potentials may describe crystallization in carbon nanostructures such as graphene, nanotubes, and fullerenes. We give conditions in order to prove that planar energy minimizers are necessarily honeycomb, namely graphene patches. Moreover, we provide an explicit formula for the ground state energy which exactly quantifies the lower-order surface energy contribution. This allows us to give some description of the geometry of ground states. By recasting the minimization problem in three-space dimensions, we prove that ground states are necessarily nonplanar and, in particular, rolled-up structures like nanotubes are energetically favorable. Eventually, we check that the C20 and C60 fullerenes are strict local minimizers, hence stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arroyo M., Belytschko T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50(9), 1941–1977 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Blanc X., Le Bris C.: Periodicity of the infinite-volume ground state of a one-dimensional quantum model. Nonlinear Anal. 48(6), 791–803 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braides A., Cicalese M.: Surface energies in nonconvex discrete systems. Math. Models Methods Appl. Sci. 17(7), 985–1037 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braides A., Solci M., Vitali E.: A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2(3), 551–567 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brenner D.W.: Empirical potential for hydrocarbons for use in stimulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  ADS  Google Scholar 

  6. Brenner D.W., Shenderova O.A., Harrison J.A., Stuart S.J., Ni B., Sinnott S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002)

    Article  ADS  Google Scholar 

  7. Cox B.J., Hill J.M.: Exact and approximate geometric parameters for carbon nanotubes incorporating curvature. Carbon 45, 1453–1462 (2007)

    Article  Google Scholar 

  8. Daugherty S.M.: Independent sets and closed-shell independent sets of fullerenes. Ph.D. Thesis, University of Victoria (2009)

  9. Dresselhaus M.S., Dresselhaus G., Saito R.: Physics of carbon nanotubes. Carbon 33, 883–891 (1995)

    Article  Google Scholar 

  10. E W., Li D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286(3), 1099–1140 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Flatley L., Taylor M., Theil F., Tarasov A.: Packing twelve spherical caps to maximize tangencies. J. Comput. Appl. Math. 254, 220–225 (2013)

    Article  MathSciNet  Google Scholar 

  12. Flatley L.C., Theil F.: Face-centered cubic crystallization of atomistic configurations. (2013, preprint)

  13. Friesecke G., Theil F.: Geometry Optimization, Binding of molecules. Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2013)

    Google Scholar 

  14. Fröhlich J., Pfister C.E.: Absence of crystalline ordering in two dimensions. Commun. Math. Phys. 104, 697–700 (1986)

    Article  ADS  MATH  Google Scholar 

  15. Gardner C.S., Radin C.: The infinite-volume ground state of the Lennard-Jones potential. J. Stat. Phys. 20(6), 719–724 (1979)

    ADS  MathSciNet  Google Scholar 

  16. Grivopoulos S.: No crystallization to honeycomb or Kagomé in free space. J. Phys. A Math. Theor. 42, 115–212 (2009)

    Article  MathSciNet  Google Scholar 

  17. Harris L.C.: Face-centered cubic structures in energy-minimizing atomistic configurations. Ph.D. Thesis, Warwick University (2011)

  18. Hamrick G.C., Radin C.: The symmetry of ground states under perturbation. J. Stat. Phys. 21(5), 601–607 (1979)

    ADS  MathSciNet  Google Scholar 

  19. Heitman R., Radin C.: Ground states for sticky disks. J. Stat. Phys. 22(3), 281–287 (1980)

    ADS  Google Scholar 

  20. Kamatgalimov A.R., Kovalenko V.I.: Deformation and thermodynamic instability of a C 84 fullerene cage. Russ. J. Phys. Chem. A 84, 4L721–726 (2010)

    Google Scholar 

  21. Kroto H.W.: The stability of the fullerenes C n , with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329, 529–531 (1987)

    Article  ADS  Google Scholar 

  22. Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Amer. Math. Soc. 42, 291–363 (2005)

    Google Scholar 

  23. Lin F., Sørensen E., Kallin C., Berlinsky J.: C 20, the smallest fullerene. In: Sattler, K.D. (eds) Handbook of Nanophysics: Clusters and Fullerenes, Taylor & Francis/CRC Press, Boca Raton (2010)

  24. Mielke A.: Private communication (2012)

  25. Müller S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Equ. 1(2), 169–204 (1993)

    Article  MATH  Google Scholar 

  26. Radin C.: Classical ground states in one dimension. J. Stat. Phys. 35, 1–2109117 (1983)

    Google Scholar 

  27. Radin, C., Schulmann, L.S.: Periodicity of classical ground states. Phys. Rev. Lett. 51(8):621–622 (1983)

    Google Scholar 

  28. Radin C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1(5-6), 1157–1191 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  29. Radin C.: The ground state for soft disks. J. Stat. Phys. 26(2), 365–373 (1981)

    ADS  MathSciNet  Google Scholar 

  30. Schein S., Friedrich T.: A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule for fullerenes with more than 60 vertices. Proc. Natl. Acad. Sci. USA 105, 19142–19147 (2008)

    Article  ADS  Google Scholar 

  31. Schmidt B.: Ground states of the 2D sticky disc model: fine properties and N 3/4 law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727–738 (2013)

    ADS  MATH  MathSciNet  Google Scholar 

  32. Stillinger F.H., Weber T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 8, 5262–5271 (1985)

    Article  ADS  Google Scholar 

  33. Tersoff J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)

    Article  ADS  Google Scholar 

  34. Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Theil F.: Surface energies in a two-dimensional mass-spring model for crystals. ESAIM Math. Model. Numer. Anal. 45, 873–899 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ventevogel W.J.: On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle. Physica A 92(3–4), 343–361 (1978)

    Article  ADS  Google Scholar 

  37. Ventevogel W.J., Nijboer B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Physica A 98(1–2), 274–288 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ventevogel W.J., Nijboer B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Physica A 99(3), 565–580 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wagner H.J.: Crystallinity in two dimensions: a note on a paper of C. Radin. J. Stat. Phys. 33(3), 523–526 (1983)

    ADS  Google Scholar 

  40. Wu J., Hwang K.C., Huang Y.: An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. J. Math. Phys. Solids 56, 279–292 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Yeung Y.A., Friesecke G., Schmidt B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial Differ. Equ. 44, 81–100 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulisse Stefanelli.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainini, E., Stefanelli, U. Crystallization in Carbon Nanostructures. Commun. Math. Phys. 328, 545–571 (2014). https://doi.org/10.1007/s00220-014-1981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1981-5

Keywords

Navigation