Skip to main content
Log in

Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption—V is of the same order as \(2\log \Vert x\Vert \) near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015]. We show that the asymptotic expansion as \(n\rightarrow +\infty \) of the minimal logarithmic energy of n points on the unit sphere in \(\mathbb {R}^3\) has a term of order n, thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Sect. 3.1 for the precise definition.

  2. A Bravais lattice of \(\mathbb {R}^2\), also called a “simple lattice” is \(L=\mathbb {Z}\mathbf {u}\oplus \mathbb {Z}\mathbf {v}\), where \((\mathbf {u},\mathbf {v})\) is a basis of \(\mathbb {R}^2\).

  3. See Sect. 7.3.

References

  1. Bloom, T., Levenberg, N., Wielonsky, F.: Logarithmic potential theory and large deviation. Comput. Methods Funct. Theory 15(4), 555–594 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braides, A.: Gamma-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  3. Brauchart, J.S.: Optimal logarithmic energy points on the unit sphere. Math. Comput. 77, 1599–1613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brauchart, J.S., Dragnev, P.D., Saff. E.B.: Riesz external field problems on the hypersphere and optimal point separation. Potential Anal. 41(3), 1–32 (2014)

  5. Brauchart, J.S., Grabner, P.: Distributing many points on spheres: minimal energy and designs. J. Complex. 31, 293–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. 578, 31–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiu, P.: Height of flat tori. Proc. Am. Math. Soc. 125, 723–730 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chowla, S., Selberg, A.: On Epstein’s zeta-function. Proc. Natl. Acad. Sci. USA 35(7), 371–374 (1949)

  9. Cohen, H.: Number theory II: Analytic and Modern Methods. Springer-Verlag New-York, New York (2007)

    MATH  Google Scholar 

  10. Coulangeon, R., Lazzarini, G.: Spherical designs and heights of Euclidean lattices. J. Number Theory 141, 288–315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dragnev, P.D.: On the separation of logarithmic points on the sphere. In: Approximation Theory X: Abstract and Classical Analysis, pp. 137–144. Vanderbilt University Press (2002)

  12. Frostman, O.: Potentiel d’équilibre et capacité des ensembles. PhD thesis, Faculté des Sciences de Lund (1935)

  13. Hardy, A.: A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17(19), 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Hardy, A., Kuijlaars, A.B.J.: Weakly admissible vector equilibrium problems. J. Approx. Theory 170, 44–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuijlaars, A.B.J., Saff, E.B.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leblé, T.: A uniqueness result for minimizers of the 1D log-gas renormalized energy. J. Funct. Anal. 268(7), 1649–1677 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Montgomery, H.L.: Minimal theta functions. Glasg. Math. J. 30, 75–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Electrons on the sphere. Comput. Methods Funct. Theory 5, 111–127 (1995)

  22. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316. Springer, Berlin (1997)

  23. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sandier, E., Serfaty, S.: 2d Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Serfaty, S.: Ginzburg–Landau vortices, Coulomb gases, and renormalized energies. J. Stat. Phys. 154(3), 660–680 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wagner, G.: On means of distances on the surface of a sphere. II. Upper bounds. Pac. J. Math. 154, 381–396 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Adrien Hardy, Edward B. Saff, and Sylvia Serfaty for their interest and helpful discussions. We are also grateful to the anonymous referees for their suggestions, remarks and patience in reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Sandier.

Additional information

Communicated by Sylvia Serfaty.

Appendix

Appendix

Here we prove the following:

Proposition 7.8

Assume X is a Polish space X, on which \(\mathbb {R}^n\) acts continuously. We denote this action by \((\lambda ,u)\rightarrow \theta _\lambda u\) and assume it is separately continuous w.r.t both \(\lambda \in \mathbb {R}^n\) and \(u\in X\). Assume P is a probability measure on \(\mathbb {R}^n\times X\) which for every \(\lambda \) is invariant under the map \((x,u)\rightarrow (x,\theta _\lambda u)\). Then, for any continuous function \(x\rightarrow \lambda (x)\), it holds that P is invariant under the map \((x,u)\rightarrow (x,\theta _\lambda (x) u)\).

Proof

Let \(\Phi \) be any bounded continuous function on \(\mathbb {R}^n\times X\). We need to prove that for any continuous function \(x\rightarrow \lambda (x)\),

$$\begin{aligned} \int \Phi (x,u)\,{\mathrm{d}}P(x,u) = \int \Phi (x,\theta _{\lambda (x)}u)\,{\mathrm{d}}P(x,u). \end{aligned}$$

For any integer \(k>0\), we let \(\{\chi _{i,k}\}_i\) be a partition of unity on \(\mathbb {R}^n\) subordinate to the covering of \(\mathbb {R}^n\) by balls of radius 1 / k, and we let \(x_{i,k}\) belong to the support of \(\chi _{i,k}\). Then, from the continuity of \(\Phi \), \(\lambda \), and \(\theta \), it is straightforward to check that for every \((x,u)\in \mathbb {R}^n\times X\), we have

$$\begin{aligned} \lim _{k\rightarrow +\infty } \sum _i \chi _{i,k}(x) \Phi (x,\theta _{\lambda (x_{i,k})}u) = \Phi (x,\theta _{\lambda (x)}u). \end{aligned}$$

It follows by dominated convergence that

$$\begin{aligned} \lim _{k\rightarrow +\infty } \sum _i\int \chi _{i,k}(x) \Phi (x,\theta _{\lambda (x_{i,k})}u) \,{\mathrm{d}}P(x,u) = \int \Phi (x,\theta _{\lambda (x)}u)\,{\mathrm{d}}P(x,u). \end{aligned}$$
(7.4)

But by the invariance of P, we have

$$\begin{aligned} \int \chi _{i,k}(x) \Phi (x,\theta _{\lambda (x_{i,k})}u) \,{\mathrm{d}}P(x,u) = \int \chi _{i,k}(x) \Phi (x,u) \,{\mathrm{d}}P(x,u), \end{aligned}$$

hence

$$\begin{aligned} \sum _i\int \chi _{i,k}(x) \Phi (x,\theta _{\lambda (x_{i,k})}u) \,{\mathrm{d}}P(x,u) = \int \Phi (x,u) \,{\mathrm{d}}P(x,u). \end{aligned}$$

Replacing (7.4), we get the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétermin, L., Sandier, E. Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere. Constr Approx 47, 39–74 (2018). https://doi.org/10.1007/s00365-016-9357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9357-z

Keywords

Mathematics Subject Classification

Navigation