Skip to main content
Log in

Toward \(\mathrm {U}(N|M)\) knot invariant from ABJM theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study \(\mathrm {U}(N|M)\) character expectation value with the supermatrix Chern–Simons theory, known as the ABJM matrix model, with emphasis on its connection to the knot invariant. This average just gives the half-BPS circular Wilson loop expectation value in ABJM theory, which shall correspond to the unknot invariant. We derive the determinantal formula, which gives \(\mathrm {U}(N|M)\) character expectation values in terms of \(\mathrm {U}(1|1)\) averages for a particular type of character representations. This means that the \(\mathrm {U}(1|1)\) character expectation value is a building block for the \(\mathrm {U}(N|M)\) averages and also, by an appropriate limit, for the \(\mathrm {U}(N)\) invariants. In addition to the original model, we introduce another supermatrix model obtained through the symplectic transform, which is motivated by the torus knot Chern–Simons matrix model. We obtain the Rosso–Jones-type formula and the spectral curve for this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We can derive the so-called mirror description for this partition function, as well as the ordinary ABJM matrix model [25]. It depends on the parameters (PQ) in a trivial way (7.3). See “Appendix” for details.

  2. Although we do not have an explicit proof of this statement, we check it with a number of examples by numerical calculations.

  3. The spectral curve for Chern–Simons theory on the lens space \(L(r,1) = S^3/\mathbb {Z}_r\) (the r-cut Chern–Simons matrix model) is given by [29]

    figure a

    where \(p_r(V)\) is a degree r polynomial such that the coefficients of \(V^r\) and \(V^0\) are given by one, \(p_r(V) = V^r + \cdots + 1\). When the Chern–Simons gauge group is broken as \(\mathrm {U}(N_1 + \cdots + N_r) \rightarrow \mathrm {U}(N_1) \times \cdots \times \mathrm {U}(N_r)\), the parameter c corresponds to the total ’t Hooft coupling \(c = \exp g_s (N_1 + \cdots + N_r)/2\). Since the polynomial \(p_r(V)\) has \(r-1\) parameters, the total number of the parameters becomes \(1 + (r-1) = r\), which is consistent with that of the subgroups, \(\mathrm {U}(N_i)\) with \(i = 1, \ldots , r\).

  4. Let us note that another kind of approach to the B-model description, which is in principle applicable to any knots, is discussed based on the A-polynomial [41].

  5. When the representation does not satisfy this condition, there is no simple analogy between the matrix integral with the external fields and the Wilson loop average (2.34), because such an external field has to consist of \(N+N\) parameters for \(\mathrm {U}(N|N)\) theory. On the other hand, this analogy holds for arbitrary representations in the ordinary \(\mathrm {U}(N)\) Chern–Simons theory as (6.21). It is because even if the number of nonzero elements in the partition is less than N at the first place, it can be made N by the constant shift, since the average (2.31) is invariant under the shift of the partition

    figure c

    It is obvious that the \(\mathrm {U}(N|N)\) invariant (2.26) is not invariant under such a constant shift of the partition, since the corresponding external field is characterized by the Frobenius coordinates of the partition.

References

  1. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lawrence, R., Rozansky, L.: Witten–Reshetikhin–Turaev invariants of Seifert manifolds. Commun. Math. Phys. 205, 287–314 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Beasley, C.: Localization for Wilson loops in Chern–Simons theory. Adv. Theor. Math. Phys. 17, 1–240 (2013). arXiv:0911.2687 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  4. Källén, J.: Cohomological localization of Chern–Simons theory. JHEP 1108, 008 (2011). arXiv:1104.5353 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  5. Brini, A., Eynard, B., Mariño, M.: Torus knots and mirror symmetry. Ann. Henri Poincaré 13, 1873–1910 (2012). arXiv:1105.2012 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 1003, 089 (2010). arXiv:0909.4559 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: \(\cal{N}=6\) superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008). arXiv:0806.1218 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Drukker, N., Trancanelli, D.: A supermatrix model for \(\cal{N}=6\) super Chern–Simons-matter theory. JHEP 1002, 058 (2010). arXiv:0912.3006 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bars, I.: Supergroups and their representations. Lect. Appl. Math. 21, 17 (1983)

    MathSciNet  Google Scholar 

  10. Berele, A., Regev, A.: Hook Young-diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fay, J.D.: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352. Springer, Berlin (1973)

    MATH  Google Scholar 

  12. Borodin, A., Olshanski, G., Strahov, E.: Giambelli compatible point processes. Adv. Appl. Math. 37, 209–248 (2006). arXiv:math-ph/0505021

    Article  MathSciNet  MATH  Google Scholar 

  13. Bergère, M., Eynard, B.: Determinantal formulae and loop equations. arXiv:0901.3273 [math-ph]

  14. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Num. Theor. Phys. 1, 347–452 (2007). arXiv:math-ph/0702045 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  15. Dijkgraaf, R., Fuji, H., Manabe, M.: The volume conjecture, perturbative knot invariants, and recursion relations for topological strings. Nucl. Phys. B 849, 166–211 (2011). arXiv:1010.4542 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Borot, G., Eynard, B.: All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. Quantum Top. 6, 39–138 (2015). arXiv:1205.2261 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  17. Gukov, S., Saberi, I.: Lectures on Knot Homology and Quantum Curves. arXiv:1211.6075 [hep-th]

  18. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415–1443 (1999). arXiv:hep-th/9811131 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  19. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). arXiv:hep-th/9912123 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Mariño, M., Putrov, P.: Exact results in ABJM theory from topological strings. JHEP 1006, 011 (2010). arXiv:0912.3074 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Moens, E., Van der Jeugt, J.: A determinantal formula for supersymmetric Schur polynomials. J. Algebr. Comb. 17, 283–307 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hatsuda, Y., Honda, M., Moriyama, S., Okuyama, K.: ABJM Wilson loops in arbitrary representations. JHEP 1310, 168 (2013). arXiv:1306.4297 [hep-th]

    Article  ADS  Google Scholar 

  23. Dolivet, Y., Tierz, M.: Chern–Simons matrix models and Stieltjes–Wigert polynomials. J. Math. Phys. 48, 023507 (2007). arXiv:hep-th/0609167 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Rosso, M., Jones, V.: On the invariants of torus knots derived from quantum groups. J. Knot Theory Ramif. 2, 97–112 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kapustin, A., Willett, B., Yaakov, I.: Nonperturbative tests of three-dimensional dualities. JHEP 1010, 013 (2010). arXiv:1003.5694 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Aharony, O., Bergman, O., Jafferis, D.L.: Fractional M2-branes. JHEP 0811, 043 (2008). arXiv:0807.4924 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  27. Basor, E.L., Forrester, P.J.: Formulas for the evaluation of Toeplitz determinants with rational generating functions. Math. Nachr. 170, 5–18 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: Matrix model as a mirror of Chern–Simons theory. JHEP 0402, 010 (2004). hep-th/0211098

    Article  ADS  MathSciNet  Google Scholar 

  29. Halmagyi, N., Yasnov, V.: The spectral curve of the lens space matrix model. JHEP 0911, 104 (2009). arXiv:hep-th/0311117

    Article  ADS  MathSciNet  Google Scholar 

  30. Jockers, H., Klemm, A., Soroush, M.: Torus knots and the topological vertex. Lett. Math. Phys. 104, 953–989 (2014). arXiv:1212.0321 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Stevan, S.: Torus knots in lens spaces and topological strings. Ann. Henri Poincaré 16, 1937–1967 (2015). arXiv:1308.5509 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  32. Borot, G., Eynard, B., Orantin, N.: Abstract loop equations, topological recursion and new applications. Commun. Num. Theor. Phys. 9, 51–187 (2015). arXiv:1303.5808 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  33. Borot, G., Guionnet, A., Kozlowski, K.K.: Large-\(N\) asymptotic expansion for mean field models with Coulomb gas interaction. Int. Math. Res. Not. 2015, 10451–10524 (2015). arXiv:1312.6664 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  34. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). arXiv:hep-th/0305132 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Klemm, A., Mariño, M., Schiereck, M., Soroush, M.: ABJM Wilson loops in the Fermi gas approach. Z. Naturforsch. A68, 178–209 (2013). arXiv:1207.0611 [hep-th]

    ADS  Google Scholar 

  36. Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008). arXiv:hep-th/0612127 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  37. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117–178 (2009). arXiv:0709.1453 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Commun. Math. Phys. 337, 483–567 (2015). arXiv:1205.1103 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041 [hep-th]

  40. Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A57, 1–28 (2002). arXiv:hep-th/0105045 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Aganagic, M., Vafa, C.: Large \(N\) duality, mirror symmetry, and a Q-deformed A-polynomial for knots. arXiv:1204.4709 [hep-th]

  42. Hatsuda, Y., Mariño, M., Moriyama, S., Okuyama, K.: Non-perturbative effects and the refined topological string. JHEP 1409, 168 (2014). arXiv:1306.1734 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Eynard, B., Orantin, N.: Topological expansion of mixed correlations in the Hermitian 2-matrix model and \(x\)-\(y\) symmetry of the \(F_g\) invariants. J. Phys. A 41, 015203 (2008). arXiv:0705.0958 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  44. Eynard, B., Orantin, N.: About the \(x\)\(y\) symmetry of the \(F_g\) algebraic invariants. arXiv:1311.4993 [math-ph]

  45. Kimura, T.: Note on a duality of topological branes. PTEP 2014, 103B04 (2014). arXiv:1401.0956 [hep-th]

  46. Kimura, T.: Duality and integrability of a supermatrix model with an external source. PTEP 2014, 123A01 (2014). arXiv:1410.0680 [math-ph]

  47. Desrosiers, P., Eynard, B.: Supermatrix models, loop equations, and duality. J. Math. Phys. 51, 123304 (2010). arXiv:0911.1762 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, 111–135 (2000). arXiv:math-ph/9910005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Harish-Chandra, : Differential operators on a semisimple lie algebra. Am. J. Math. 79, 87–120 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  50. Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys. 21, 411–421 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Tanaka, A.: Comments on knotted 1/2 BPS Wilson loops. JHEP 1207, 097 (2012). arXiv:1204.5975 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. Hama, N., Hosomichi, K., Lee, S.: SUSY gauge theories on squashed three-spheres. JHEP 1105, 014 (2011). arXiv:1102.4716 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Deguchi, T., Akutsu, Y.: Graded solutions of the Yang–Baxter relation and link polynomials. J. Phys. A 23, 1861–1876 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Kauffman, L.H., Saleur, H.: Free fermions and the Alexander–Conway polynomial. Commun. Math. Phys. 141, 293–327 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Rozansky, L., Saleur, H.: \(S\) and \(T\) matrices for the super U(1,1) WZW model: application to surgery and three manifolds invariants based on the Alexander-Conway polynomial. Nucl. Phys. B 389, 365–423 (1993). arXiv:hep-th/9203069 [hep-th]

    Article  ADS  Google Scholar 

  56. Kashaev, R.M.: The hyperbolic volume of knots from quantum dilogarithm. Lett. Math. Phys. 39, 269–275 (1997). arXiv:q-alg/9601025 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  57. Murakami, H., Murakami, J.: The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186, 85–104 (2001). arXiv:math/9905075 [math.GT]

    Article  MathSciNet  MATH  Google Scholar 

  58. Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial. Commun. Math. Phys. 255, 577–627 (2005). arXiv:hep-th/0306165 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Garoufalidis, S.: On the characteristic and deformation varieties of a knot. Geom. Topol. Monogr. 7, 291–309 (2004). arXiv:math/0306230 [math.GT]

    Article  MathSciNet  MATH  Google Scholar 

  60. Khovanov, M.: A categorification of the Jones polynomials. Duke Math. J. 101, 359–426 (2000). arXiv:math/9908171 [math.QA]

  61. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fundam. Math. 199, 1–91 (2008). arXiv:math/0401268 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  62. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. 12, 1387–1425 (2008). arXiv:math/0505056 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  63. Gukov, S., Schwarz, A.S., Vafa, C.: Khovanov–Rozansky homology and topological strings. Lett. Math. Phys. 74, 53–74 (2005). arXiv:hep-th/0412243 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Dunfield, N.M., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15, 129–159 (2006). arXiv:math/0505662 [math.GT]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Borot and M. Mariño for fruitful discussions. We are also grateful to A. Brini for carefully reading the manuscript and giving useful comments. BE thanks Centre de Recherches Mathématiques de Montréal, the FQRNT grant from the Québec government, Piotr Sułkowski and the ERC starting grant Fields-Knots. The work of TK is supported in part by Keio Gijuku Academic Development Funds, MEXT-Supported Program for the Strategic Research Foundation at Private Universities “Topological Science” (No. S1511006), and JSPS Grant-in-Aid for Scientific Research on Innovative Areas “Topological Materials Science” (No. JP15H05855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Kimura.

Appendix: Mirror of the torus knot ABJM partition function

Appendix: Mirror of the torus knot ABJM partition function

In this appendix, we derive the mirror description of the torus knot ABJM partition function [25]. We first expand the determinants in (3.10) as summation over permutations

$$\begin{aligned} \mathcal {Z}_\mathrm{ABJM}^{(P,Q)}= & {} \sum _{\sigma ,\sigma ' \in \mathfrak {S}_N} (-1)^{\sigma +\sigma '} \frac{1}{N!^2} \int [\mathrm{d}x]^N [\mathrm{d}y]^N\nonumber \\&\quad \prod _{i=1}^N \left( 2 \cosh \frac{x_i - y_{\sigma (i)}}{2P} \, 2 \cosh \frac{x_i - y_{\sigma '(i)}}{2Q} \right) ^{-1}. \end{aligned}$$
(7.1)

Applying the formula (2.20), we have

$$\begin{aligned}&\sum _{\sigma ,\sigma ' \in \mathfrak {S}_N} (-1)^{\sigma +\sigma '} \frac{1}{N!^2} \int \! \frac{\mathrm{d}^N x}{(2\pi )^N} \frac{\mathrm{d}^N y}{(2\pi )^N} \frac{\mathrm{d}^N z}{(2\pi )^N} \frac{\mathrm{d}^N w}{(2\pi )^N} \, \prod _{i=1}^N \left( \cosh z_i \, \cosh w_i \right) ^{-1} \nonumber \\&\quad \times \exp \left[ \frac{ik}{4PQ\pi } \sum _{i=1}^N (x_i^2 - y_i^2) + \frac{i}{\pi } \sum _{i=1}^N \left( x_i \left( \frac{z_i}{P} + \frac{w_i}{Q} \right) - y_i \left( \frac{z_{\sigma ^{-1}(i)}}{P} + \frac{w_{\sigma '^{-1}(i)}}{Q} \right) \right) \right] \nonumber \\&\qquad = \sum _{\sigma ,\sigma ' \in \mathfrak {S}_N} (-1)^{\sigma +\sigma '} \frac{(PQ)^N}{N!^2 \, k^N} \int \! \frac{\mathrm{d}^N z}{(2\pi )^N} \frac{\mathrm{d}^N w}{(2\pi )^N} \, \prod _{i=1}^N \frac{\exp \left[ - \frac{2i}{k\pi } \left( z_i w_i - z_{\sigma ^{-1}(i)} w_{\sigma '^{-1}(i)} \right) \right] }{ \cosh z_i \, \cosh w_i }.\nonumber \\ \end{aligned}$$
(7.2)

At this moment, it is obvious that the partition function depends only on the composition of permutations \(\sigma \cdot \sigma '^{-1}\). Thus, by fixing either of them \(\sigma '\) as the trivial permutation, we obtain

$$\begin{aligned} \mathcal {Z}_\mathrm{ABJM}^{(P,Q)}&= \sum _{\sigma \in \mathfrak {S}_N} (-1)^N \frac{(PQ)^N}{N! \, k^N} \int \! \frac{\mathrm{d}^N z}{(2\pi )^N} \frac{\mathrm{d}^N w}{(2\pi )^N} \, \prod _{i=1}^N \frac{\exp \left[ - \frac{2i}{k\pi } \left( z_i - z_{\sigma (i)} \right) w_i \right] }{ \cosh z_i \, \cosh w_i } \nonumber \\&= \sum _{\sigma \in \mathfrak {S}_N} (-1)^N \frac{(PQ)^N}{N! \, k^N} \int \! \frac{\mathrm{d}^N z}{(2\pi )^N} \, \prod _{i=1}^N \left( \cosh z_i \cdot 2\cosh \frac{z_i - z_{\sigma (i)}}{k} \right) ^{-1} \nonumber \\&= \frac{(PQ)^N}{N! (2k)^N} \int \! \frac{\mathrm{d}^N z}{(2\pi )^N} \, \prod _{i<j}^N \left( \tanh \frac{z_i - z_j}{2k} \right) ^2 \, \prod _{i=1}^N \left( 2 \cosh \frac{z_i}{2} \right) ^{-1} \nonumber \\&= (PQ)^N \mathcal {Z}_\mathrm{ABJM}^{(1,1)}. \end{aligned}$$
(7.3)

This is the mirror expression of the partition function (3.10). Especially for \(k=1\), the mirror theory turns out to be \(\mathcal {N}=4\) SYM theory with a single fundamental and a single adjoint hypermultiplet. The dependence on the parameters (PQ) becomes trivial in this mirror representation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eynard, B., Kimura, T. Toward \(\mathrm {U}(N|M)\) knot invariant from ABJM theory. Lett Math Phys 107, 1027–1063 (2017). https://doi.org/10.1007/s11005-017-0936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0936-0

Keywords

Mathematics Subject Classification

Navigation