Skip to main content
Log in

The Split Property for Locally Covariant Quantum Field Theories in Curved Spacetime

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh–Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgärtel H., Wollenberg M.: Causal Nets of Operator Algebras. Akademie-Verlag, Berlin (1992)

    MATH  Google Scholar 

  2. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005) gr-qc/0401112

  3. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006) gr-qc/0512095

  4. Borchers H.J.: Über die Vollständigkeit lorentz-invarianter Felder in einer zeitartigen Röhre. Nuovo Cimento 19(10), 787–793 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borchers H.J.: On the vacuum state in quantum field theory. II. Commun. Math. Phys. 1, 57–79 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics: 1. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  7. Brunetti, R., Fredenhagen, K., Imani, P., Rejzner, K.: The locality axiom in quantum field theory and tensor products of C *-algebras. Rev. Math. Phys. 26(6), 1450010, 10 (2014)

  8. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Buchholz D.: Product states for local algebras. Commun. Math. Phys. 36, 287–304 (1974)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Buchholz D., D’Antoni C., Fredenhagen K.: The universal structure of local algebras. Commun. Math. Phys. 111(1), 123–135 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Buchholz D., Doplicher S., Longo R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170(1), 1–17 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Buchholz D., Junglas P.: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys. 11(1), 51–58 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Buchholz D., Junglas P.: On the existence of equilibrium states in local quantum field theory. Commun. Math. Phys. 121, 255–270 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Buchholz D., Størmer E.: Superposition, transition probabilities and primitive observables in infinite quantum systems. Commun. Math. Phys. 339(1), 309–325 (2015)

    Article  ADS  Google Scholar 

  15. Buchholz D., Wichmann E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. D’Antoni C., Doplicher S., Fredenhagen K., Longo R.: Convergence of local charges and continuity properties of W *-inclusions. Commun. Math. Phys. 110(2), 325–348 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  17. D’Antoni C., Hollands S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. Commun. Math. Phys. 261(1), 133–159 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Dappiaggi C.: Remarks on the Reeh–Schlieder property for higher spin free fields on curved spacetimes. Rev. Math. Phys. 23(10), 1035–1062 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Doplicher S., Longo R.: Local aspects of superselection rules. II. Commun. Math. Phys. 88(3), 399–409 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25(5), 1350008, 47 (2013)

  22. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? Ann. H. Poincaré 13, 1613–1674 (2012)

  23. Fredenhagen K.: On the modular structure of local algebras of observables. Commun. Math. Phys. 97(1–2), 79–89 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. II. Ann. Phys. 136, 243–272 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  25. Gibbons G.W., Perry M.J.: Black holes and thermal Green functions. Proc. R. Soc. Lond. Ser. A. 358(1695), 467–494 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  26. Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  27. Haagerup U.: Connes’ bicentralizer problem and uniqueness of the injective factor of type III1. Acta Math. 158(1–2), 95–148 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Special topics, Advanced Theory—An Exercise Approach, vol. IV. Birkhäuser Boston, Boston (1992)

  29. Kay B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. I. A one particle structure for the stationary case. Commun. Math. Phys. 62, 55–70 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  30. Lee, J.M.: Introduction to Topological Manifolds. Graduate Texts in Mathematics, vol. 202, 2nd edn. Springer, New York (2011)

  31. Milnor, J.W.: Topology from the Differentiable Viewpoint. The University Press of Virginia, Charlottesville (1965)

  32. Nomizu K., Ozeki H.: The existence of complete Riemannian metrics. Proc. Am. Math. Soc. 12, 889–891 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  33. O’Neill B.: Semi-Riemannian Geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  34. Reeh H., Schlieder S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden. Nuovo cimento 22(10), 1051–1068 (1961)

    Article  MathSciNet  Google Scholar 

  35. Sanders K.: On the Reeh–Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)

    Article  MATH  ADS  Google Scholar 

  36. Strohmaier A.: The Reeh–Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215(1), 105–118 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Summers S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2(2), 201–247 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Summers S.J.: Subsystems and independence in relativistic microscopic physics. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 40(2), 133–141 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Verch R.: Antilocality and a Reeh–Schlieder theorem on manifolds. Lett. Math. Phys. 28(2), 143–154 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Verch R.: Nuclearity, split property, and duality for the Klein–Gordon field in curved spacetime. Lett. Math. Phys. 29(4), 297–310 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Verch R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Commun. Math. Phys. 160(3), 507–536 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Verch R.: A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261–288 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Fewster.

Additional information

Dedicated to the memory of John E. Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fewster, C.J. The Split Property for Locally Covariant Quantum Field Theories in Curved Spacetime. Lett Math Phys 105, 1633–1661 (2015). https://doi.org/10.1007/s11005-015-0798-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0798-2

Mathematics Subject Classification

Keywords

Navigation