Skip to main content
Log in

A Note on Permutation Twist Defects in Topological Bilayer Phases

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a mathematical derivation of some of the most important physical quantities arising in topological bilayer systems with permutation twist defects as introduced by Barkeshli et al. (Phys Rev B 87:045130_1-23, 2013). A crucial tool is the theory of permutation equivariant modular functors developed by Barmeier et al. (Int Math Res Notices 2010:3067–3100, 2010; Transform Groups 16:287–337, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bantay P.: Characters and modular properties of permutation orbifolds. Phys. Lett. B 419, 175–178 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Barkeshli, M., Jian, C.M., Qi, X.-L.: Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130_1–045130_23 (2013). arXiv:1208.4834

  3. Barkeshli, M., Jian, C.M., Qi, X.-L.: Classification of topological defects in abelian topological states. Phys. Rev. B 88, 241103(R)_1–241103(R)_5 (2013). arXiv:1304.7579

  4. Barkeshli, M., Jian, C.M., Qi, X.-L.: Theory of defects in Abelian topological states. Phys. Rev. B 88, 235103_1–235103_21 (2013). arXiv:1305.7203

  5. Barkeshli, M., Qi, X.-L.: Topological nematic states and non-abelian lattice dislocations. Phys. Rev. X 2, 031013_1–031013_11 (2012). arXiv:1112.3311

  6. Barkeshli, M., Wen, X.-G.: \({U(1)\times U(1) \rtimes Z_2}\) Chern–Simons theory and Z 4 parafermion fractional quantum Hall states. Phys. Rev. B 81, 045323_1–045323_18 (2010).

  7. Barmeier, T.: Permutation modular invariants from modular functors. Preprint arXiv:1006.3938

  8. Barmeier T., Schweigert C.: A geometric construction for permutation equivariant categories from modular functors. Transform. Groups 16, 287–337 (2011) arXiv:1004.1825

    Article  MathSciNet  MATH  Google Scholar 

  9. Barmeier T., Fuchs J., Runkel I., Schweigert C.: Module categories for permutation modular invariants. Int. Math. Res. Notices 2010, 3067–3100 (2010) arXiv:0812.0986

    MathSciNet  MATH  Google Scholar 

  10. Birke L., Fuchs J., Schweigert C.: Symmetry breaking boundary conditions and WZW orbifolds. Adv. Theor. Math. Phys. 3, 671–624 (1999) hep-th/9905038

  11. Borisov L.A., Halpern M.B., Schweigert C.: Systematic approach to cyclic orbifolds. Int. J. Mod. Phys. A 13, 125–168 (1998) hep-th/9701061

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Buerschaper, O., Mombelli, J.M., Christandl, M., Aguado, M.: A hierarchy of topological tensor network states. J. Math. Phys. 54, 012201_1–012201_46 (2013). arXiv:1007.5283

  13. Davydov A.A., Nikshych D., Ostrik V.: On the structure of the Witt group of braided fusion categories. Selecta Mathematica 19, 237–269 (2013) arXiv:1109.5558

    Article  MathSciNet  MATH  Google Scholar 

  14. Etingof P.I., Nikshych D., Ostrik V., Meir E.: Fusion categories and homotopy theory. Quantum Topol. 1, 209–273 (2010) arXiv:0909.3140

    Article  MathSciNet  MATH  Google Scholar 

  15. Freedman, M., Hastings, M.B., Nayak, C., Qi, X.-L., Walker, K., Wang, Z.: Projective ribbon permutation statistics: a remnant of non-abelian braiding in higher dimensions. Phys. Rev. B 83, 115132_1–115132_35 (2011). arXiv:1005.0583

  16. Freedman, M., Nayak, C., Walker, K.: Towards universal topological quantum computation in the \({\nu=5/2}\) fractional quantum Hall state. Phys. Rev. B 73, 245307_1–245307_21 (2006). cond-mat/0512066

  17. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199, 192–329 (2006) math.CT/0309465

    Article  MathSciNet  MATH  Google Scholar 

  18. Fröhlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Defect lines, dualities, and generalised orbifolds. In: Exner, P. (ed.) XVI International Congress on Mathematical Physics, pp. 608–613. World Scientific, Singapore (2010). arXiv:0909.5013

  19. Fuchs, J., Schweigert, C., Stigner, C.: From non-semisimple Hopf algebras to correlation functions for logarithmic CFT. J. Phys. A 46, 494008_1–494008_40 (2013). arXiv:1302.4683

  20. Fuchs J., Schweigert C., Valentino A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321, 543–575 (2013) arXiv:1203.4568

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Fuchs, J., Schweigert, C., Valentino, A.: A geometric approach to boundaries and surface defects in Dijkgraaf–Witten theories. Commun. Math. Phys. doi:10.1007/s00220-014-2067-0

  22. Kapustin A., Saulina N.: Topological boundary conditions in abelian Chern–Simons theory. Nucl. Phys. B 845, 393–435 (2011) arXiv:1008.0654

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Kirillov A.A.: Modular categories and orbifold models. Commun. Math. Phys. 229, 309–335 (2002) math.QA/0104242

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Kirillov, A.A.: On G-equivariant modular categories. Preprint math.QA/0401119

  25. Kirillov A.A., Ostrik V.: On a q-analog of McKay correspondence and the ADE classification of \({\widehat {\mathfrak{sl}}(2)}\) conformal field theories. Adv. Math. 171, 183–227 (2002) math.QA/0101219

    Article  MathSciNet  MATH  Google Scholar 

  26. Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313, 351–373 (2012) arXiv:1104.5047

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Kong L., Runkel I.: Morita classes of algebras in modular tensor categories. Adv. Math. 219, 1548–1576 (2008) arXiv:0708.1897

    Article  MathSciNet  MATH  Google Scholar 

  28. Morton, J.C.: Cohomological twisting of 2-linearization and extended TQFT. J. Homotopy Relat. Struct. doi:10.1007/s40062-013-0047-2

  29. Müger M.: From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Alg. 180, 81–157 (2003) math.CT/0111204

    Article  MATH  Google Scholar 

  30. Müger M.: Conformal orbifold theories and braided crossed G-categories. Commun. Math. Phys. 260, 727–762 (2005) math.QA/0403322 [ibid. 260 (2005) 763, Erratum]

    Article  MATH  ADS  Google Scholar 

  31. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003) math.QA/0111139

    Article  MathSciNet  MATH  Google Scholar 

  32. Ostrik V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Notices No. 27, 1507–1520 (2003) math.QA/0202130

    Article  MathSciNet  Google Scholar 

  33. Turaev V.G.: Homotopy Quantum Field Theory. European Mathematical Society, Zürich (2010)

    Book  MATH  Google Scholar 

  34. Van Oystaeyen F., Zhang Y.H.: The Brauer group of a braided monoidal category. J. Algebra 202, 96–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schweigert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, J., Schweigert, C. A Note on Permutation Twist Defects in Topological Bilayer Phases. Lett Math Phys 104, 1385–1405 (2014). https://doi.org/10.1007/s11005-014-0719-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0719-9

Mathematics Subject Classification

Keywords

Navigation