Skip to main content
Log in

A geometric construction for permutation equivariant categories from modular functors

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a finite group. Given a finite G-set \(\cal{X}\) and a modular tensor category \(\cal{C}\), we construct a weak G-equivariant fusion category \(\cal{C}^{\cal{X}}\), called the permutation equivariant tensor category. The construction is geometric and uses the formalism of modular functors. As an application, we concretely work out a complete set of structure morphisms for \(\mathbb{Z}/2\)-permutation equivariant categories, finishing thereby a program we initiated in an earlier paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Atiyah, Topological quantum field theories, Publ. Math. Inst. Hautes Études Sci. bf 68 (1988), 175–186.

    Article  MathSciNet  Google Scholar 

  2. B. Bakalov, A. Kirillov, On the Lego-Teichmüller game, Transform. Groups 5 (2000), no. 3, 207–244.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bakalov, A. Kirillov, Lectures on Tensor Categories and Modular Functors, Amer. Math. Soc., Providence, RI, 2001.

    MATH  Google Scholar 

  4. P. Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998), nos. 1–4, 175–178.

    MathSciNet  Google Scholar 

  5. P. Bantay, Permutation orbifolds, Nuclear Phys. B 633 (2002), no. 3, 365–378.

    MathSciNet  Google Scholar 

  6. P. Bantay, The kernel of the modular representation and the Galois action in RCFT 233 (2003), no. 3, 423–438.

  7. T. Barmeier, Permutation equivariant ribbon categories from modular functors, PhD thesis, Universität Hamburg, 2010, http://www2.sub.uni-ham-burg.de/opus/volltexte/2010/4772 .

  8. T. Barmeier, J. Fuchs, I. Runkel, C. Schweigert, Module categories for permutation modular invariants, Int. Math. Res. Not. (2010), doi:10.1093/imrn/rnp235.

  9. L. Borisov, M. B. Halpern, C. Schweigert, Systematic approach to cyclic orbifolds, Int. J. Mod. Phys. A 13 (1998), 125–168.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Dijkgraaf, A geometrical approach to two-dimensional conformal field theory, PhD thesis, Utrecht, 1989.

  11. J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators I: Partition functions, Nuclear Phys. B 646 (2002), no. 3, 353–497.

    MathSciNet  Google Scholar 

  12. J. Fuchs, I. Runkel, C. Schweigert, Boundaries, defects and Frobenius algebras, Fortschr. Phys. 51 (2003), nos. 7–8, 850–855.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Joyal, R. Street, The geometry of tensor calculus, I, Adv. Math. 88 (1991), no. 1, 55–112.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Kirillov, On G-equivariant modular categories, math/0401119 , 2004.

  15. A. Kirillov, T. Prince, On G-modular functor, arXiv:0807.0939 , 2008.

  16. J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathematical Society Student Texts, Vol. 59, Cambridge University Press, Cambridge, 2004.

    MATH  Google Scholar 

  17. L. Kong, I. Runkel, Cardy algebras and sewing constraints, I, Comm. Math. Phys. 292 (2009), no. 3, 871–912.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. W. Moore, G. Segal, D-branes and K-theory in 2D topological field theory, hep-th/0609042 , 2006.

  19. S. H. Ng, P. Schauenburg, Congruence subgroups and generalized Frobenius-Schur indicators, Adv. Math. 211 (2007), no. 1, 34–71.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Prince, On the Lego-Teichmüller game for finite G-cover, arXiv:0712.2853 , 2007.

  21. A. Recknagel, Permutation branes, J. High Energy Phys. (2003), no. 4, 041, 27 pp. (electronic).

  22. V. Turaev, Quantum Invariants of Knots and 3-Manifolds, Walter de Gruyter, Berlin, 1994.

    MATH  Google Scholar 

  23. V. Turaev, Homotopy field theory in dimension 2 and group-algebras, math/9910010 , 1999.

  24. V. Turaev, Homotopy field theory in dimension 3 and crossed group-categories, math/0005291 , 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Barmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barmeier, T., Schweigert, C. A geometric construction for permutation equivariant categories from modular functors. Transformation Groups 16, 287–337 (2011). https://doi.org/10.1007/s00031-011-9132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9132-y

Keywords

Navigation