Skip to main content
Log in

Regularity for Eigenfunctions of Schrödinger Operators

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a regularity result in weighted Sobolev (or Babuška–Kondratiev) spaces for the eigenfunctions of certain Schrödinger-type operators. Our results apply, in particular, to a non-relativistic Schrödinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let \({\mathcal{K}_{a}^{m}(\mathbb{R}^{3N},r_S)}\) be the weighted Sobolev space obtained by blowing up the set of singular points of the potential \({V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}}\) , \({x \in \mathbb{R}^{3N}}\) , \({b_j, c_{ij} \in \mathbb{R}}\) . If \({u \in L^2(\mathbb{R}^{3N})}\) satisfies \({(-\Delta + V) u = \lambda u}\) in distribution sense, then \({u \in \mathcal{K}_{a}^{m}}\) for all \({m \in \mathbb{Z}_+}\) and all a ≤ 0. Our result extends to the case when b j and c ij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a < 3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. In: Mathematical Notes, vol. 29. Princeton University Press, Princeton (1982)

  2. Ammann B., Ionescu A.D., Nistor V.: Sobolev spaces and regularity for polyhedral domains. Documenta Mathematica 11(2), 161–206 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Ammann B., Lauter R., Nistor V.: On the geometry of Riemannian manifolds with a Lie structure at infinity. Int. J. Math. Math. Sci. 2004(1–4), 161–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammann B., Lauter R., Nistor V.: Pseudodifferential operators on manifolds with a Lie structure at infinity. Ann. Math. 165, 717–747 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ammann B., Nistor V.: Weighted sobolev spaces and regularity for polyhedral domains. Comput. Methods Appl. Mech. Eng. 196, 3650–3659 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Băcuţă C., Mazzucato A.L., Nistor V., Zikatanov L.: Interface and mixed boundary value problems on n-dimensional polyhedral domains. Doc. Math. 15, 687–745 (2010)

    MathSciNet  Google Scholar 

  7. BBăcuţă C., Nistor V., Zikatanov L.: Improving the rate of convergence of high-order finite elements on polyhedra. II. Mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28(7–8), 775–824 (2007)

    MathSciNet  Google Scholar 

  8. Carmona R.: Regularity properties of Schrödinger and Dirichlet semigroups. J. Funct. Anal. 33(3), 259–296 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carmona R., Masters W.C., Simon B.: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91(1), 117–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carmona R., Simon B.: Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. Lower bounds and path integrals. Comm. Math. Phys. 80(1), 59–98 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Castella F., Jecko T., Knauf A.: Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities. Ann. Henri Poincaré 9(4), 775–815 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cordes, H.O.: Spectral theory of linear differential operators and comparison algebras. In: London Mathematical Society, Lecture Notes Series 76. Cambridge University Press, Cambridge (1987)

  13. Coriasco S., Schrohe E., Seiler J.: Bounded imaginary powers of differential operators on manifolds with conical singularities. Math. Z. 244(2), 235–269 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Cornean H.D., Nenciu G.: On eigenfunction decay for two-dimensional magnetic Schrödinger operators. Comm. Math. Phys. 192(3), 671–685 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Crainic M., Fernandes R.: Integrability of Lie brackets. Ann. Math. (2) 157(2), 575–620 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer, Berlin (1987) (study edition)

  17. Evans, L.: Partial differential equations. In: Graduate Studies in Mathematics, 2nd edn, vol. 19. American Mathematical Society, Providence (2010)

  18. Felli V., Ferrero A., Terracini S.: Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. (JEMS) 13(1), 119–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flad, H.-J., Harutyunyan, G.: Ellipticity of quantum mechanical hamiltonians in the edge algebra. Preprint. http://arxiv.org/abs/1103.0207

  20. Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. II. Jastrow factors. M2AN Math. Model. Numer. Anal. 41(2), 261–279 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flad H.-J., Harutyunyan G., Schneider R., Schulze B.-W.: Explicit Green operators for quantum mechanical Hamiltonians. I. The hydrogen atom. Manuscripta Math. 135, 497–519 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Flad H.-J., Schneider R., Schulze B.-W.: Asymptotic regularity of solutions to Hartree–Fock equations with Coulomb potential. Math. Methods Appl. Sci. 31(18), 2172–2201 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255(1), 183–227 (2005)

    Article  ADS  MATH  Google Scholar 

  24. Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Analytic structure of many-body Coulombic wave functions. Commun. Math. Phys. 289(1), 291–310 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Analytic structure of solutions to multiconfiguration equations. J. Phys. A 42(31), 315208–315211 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Georgescu V.: On the spectral analysis of quantum field Hamiltonians. J. Funct. Anal. 245(1), 89–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Georgescu V., Iftimovici A.: Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory. Rev. Math. Phys. 18(4), 417–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griebel M., Hamaekers J.: Tensor product multiscale many-particle spaces with finite-order weights for the electronic schrödinger equation. Zeitschrift für Physikalische Chemie 224, 527–543 (2010)

    Article  Google Scholar 

  29. Griebel M., Knapek S.: Optimized general sparse grid approximation spacs for operator equations. Math. Comp. 78(268), 2223–2257 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Grieser, D.: Basics of the b-calculus. In: Approaches to singular analysis (Berlin, 1999). Oper. Theory Adv. Appl., vol. 125, pp. 30–84. Birkhäuser, Basel (2001)

  31. Grieser D., Hunsicker E.: Pseudodifferential operator calculus for generalized \({\mathbb Q}\) -rank 1 locally symmetric spaces. I. J. Funct. Anal. 257(12), 3748–3801 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Helffer B., Siedentop H.: Regularization of atomic Schrödinger operators with magnetic field. Math. Z. 218(3), 427–437 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hunsicker E., Nistor V., Sofo J.: Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions. J. Math. Phys. 49(8), 083501–083521 (2008)

    Article  MathSciNet  Google Scholar 

  34. Iftimie V., Măntoiu M., Purice R.: Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 43(3), 585–623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iftimie, V., Purice, V.: Eigenfunctions decay for magnetic pseudodifferential operators. Preprint. http://arxiv.org/abs/1005.1743

  36. Jecko T.: A new proof of the analyticity of the electonic density of molecules. Lett. Math. Phys 93(1), 73–83 (2010) arXiv:0904.0221v8

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Kato T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc. 70, 195–211 (1951)

    MATH  Google Scholar 

  38. Kato T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957)

    Article  MATH  Google Scholar 

  39. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995) (Reprint of the 1980 edition)

  40. Kozlov, V., Mazya, V., Rossmann, J.: Spectral problems associated with corner singularities of solutions to elliptic equations. Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001)

  41. Lauter, R., Nistor, V.: Analysis of geometric operators on open manifolds: a groupoid approach. In: Quantization of singular symplectic quotients. Progr. Math., vol. 198, pp. 181–229. Birkhäuser, Basel (2001)

  42. Lewis J.E., Parenti C.: Pseudodifferential operators of Mellin type. Commun. Partial Diff. Equ. 8(5), 477–544 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mazzeo R., Melrose R.B.: Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math. 2(4), 833–866 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Melrose, R.B.: Pseudodifferential operators, corners and singular limits. In: Proc. Int. Congr. Math., Kyoto, Japan 1990, vol. 1, pp. 217–234 (1991)

  45. Melrose, R.B.: Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge (1995)

  46. Melrose, R.B.: Differential analysis on manifolds with corners. Parts of an unpublished book. http://math.mit.edu/~rbm/book.html, Accessed September 1996

  47. Morrey, C.B.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer, New York (1966)

  48. Reed M., Simon B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

    MATH  Google Scholar 

  49. Schwab C., Stevenson R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp. 78(267), 1293–1318 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Taylor, M.: Partial differential equations II, Qualitative studies of linear equations. Applied Mathematical Sciences, vol. 116. Springer, New York (1996)

  51. Vasy A.: Propagation of singularities in many-body scattering. Ann. Sci. École Norm. Sup. (4) 34(3), 313–402 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Vasy A.: Exponential decay of eigenfunctions in many-body type scattering with second-order perturbations. J. Funct. Anal. 209(2), 468–492 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vazquez J., Zuazua E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1), 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yserentant H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98(4), 731–759 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yserentant H.: The hyperbolic cross space approximation of electronic wavefunctions. Numer. Math. 105(4), 659–690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yserentant, H. Regularity and approximability of electronic wave functions. Lecture Notes in Mathematics, vol. 2000. Springer, Berlin (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ammann.

Additional information

Ammann’s manuscripts are available from http://www.berndammann.de/publications. Carvalho’s manuscripts are available from http://www.math.ist.utl.pt/~ccarv. Nistor’s Manuscripts available from http://www.math.psu.edu/nistor/. Nistor was partially supported by the NSF Grants DMS-0713743, OCI-0749202, and DMS-1016556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammann, B., Carvalho, C. & Nistor, V. Regularity for Eigenfunctions of Schrödinger Operators. Lett Math Phys 101, 49–84 (2012). https://doi.org/10.1007/s11005-012-0551-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0551-z

Mathematics Subject Classification

Keywords

Navigation