Skip to main content
Log in

The hyperbolic cross space approximation of electronic wavefunctions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The electronic Schrödinger equation describes the motion of electrons under Coulomb interaction forces in the field of clamped nuclei and forms the basis of quantum chemistry. The present article continues the author’s recent work (Numer. Math. 98, 731–759, 2004) on the regularity of its solutions, the electronic wavefunctions. It was shown in the mentioned article that these wavefunctions possess square integrable high-order mixed weak derivatives as they are needed to justify and underpin sparse grid and hyperbolic cross space approximation techniques theoretically. How fast the norms of these derivatives can increase with the number of electrons is studied in the present article. Provided that all quantities are properly related to a characteristic lengthscale of the considered atomar or molecular system, the norms of the derivatives remain bounded independent of the number of electrons and the number, the positions, and the charges of the nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S. (1981) Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton University Press, Princeton

    Google Scholar 

  2. Bungartz H.J., Griebel M.: Sparse grids. In: Acta Numerica 2004, pp. 1–123. Cambridge University Press, Cambridge (2004)

  3. Flad H.J., Hackbusch W., Kolb D., Schneider R. (2002) Wavelet approximation of correlated wave functions. I. Basics. J. Chem. Phys. 116: 9461–9657

    Article  Google Scholar 

  4. Flad H.J., Hackbusch W., Luo H., Kolb D. (2005) Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B 71: 125115

    Article  Google Scholar 

  5. Flad H.J., Hackbusch W., Schneider R. (2006) Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. M2AN 40: 49–61

    Article  MathSciNet  Google Scholar 

  6. Flad H.J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. II. Jastrow factors. Max-Planck-Institut für Mathematik in den Naturwissenschaften, Preprint 80/2005

  7. Gårding L. (1983) On the essential spectrum of Schrödinger operators. J. Funct. Anal. 52, 1–10

    Article  MathSciNet  Google Scholar 

  8. Garcke J., Griebel M. (2000) On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165, 694–716

    Article  MathSciNet  Google Scholar 

  9. Griebel M., Hamaekers J.: Sparse grids for the Schrödinger equation. Universität Bonn, INS Preprint No. 0504/2005

  10. Hackbusch W. (2000) The efficient computation of certain determinants arising in the treatment of Schrödinger’s equation. Computing 67, 35–56

    Article  MathSciNet  Google Scholar 

  11. Helgaker T., Jørgensen P., Olsen J. (2001) Molecular Electronic Structure Theory. Wiley, New York

    Google Scholar 

  12. Kohn W. (1999) Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71: 1253–1266

    Article  Google Scholar 

  13. Le Bris C. (eds) (2003) Handbook of Numerical Analysis, Vol. X: Computational Chemistry. North Holland, Amsterdam

    Google Scholar 

  14. Le Bris C.: Computational chemistry from the perspective of numerical analysis. In: Acta Numerica 2005, pp. 363–444. Cambridge University Press, Cambridge (2005)

  15. Le Bris C., Lions P.L. (2005) From atoms to crystals: a mathematical journey. Bull. Am. Math. Soc., New Ser. 42, 291–363

    Article  MathSciNet  Google Scholar 

  16. Luo H., Kolb D., Flad H.J, Hackbusch W., Koprucki T. (2002) Wavelet approximation of correlated wave functions II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117: 3625–3638

    Article  Google Scholar 

  17. Messiah A. (2000) Quantum Mechanics. Dover, New York

    Google Scholar 

  18. Persson A. (1960) Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8, 143–153

    MathSciNet  Google Scholar 

  19. Podolsky B., Pauling L. (1929) The momentum distribution in hydrogen-like atoms. Phys. Rev. 34, 109–116

    Article  Google Scholar 

  20. Pople J. (1999) Nobel lecture: quantum chemical models. Rev. Mod. Phys. 71: 1267–1274

    Article  Google Scholar 

  21. Stein E.M., Weiss G. (1971) Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton

    MATH  Google Scholar 

  22. Thaller B. (2004) Advanced Visual Quantum Mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Weidmann J. (1980) Linear Operators in Hilbert Spaces. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  24. Yserentant H. (2004) On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98, 731–759

    Article  MathSciNet  Google Scholar 

  25. Yserentant H.: On the electronic Schrödinger equation. Lecture Notes, Universität Tübingen 2003; accessible via the author’s homepage

  26. Yserentant H. (2005) Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101, 381–389

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Yserentant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yserentant, H. The hyperbolic cross space approximation of electronic wavefunctions. Numer. Math. 105, 659–690 (2007). https://doi.org/10.1007/s00211-006-0038-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0038-x

Mathematics Subject Classification (2000)

Navigation