Skip to main content
Log in

Review of AdS/CFT Integrability, Chapter V.2: Dual Superconformal Symmetry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Scattering amplitudes in planar \({\mathcal{N}=4}\) super Yang–Mills theory reveal a remarkable symmetry structure. In addition to the superconformal symmetry of the Lagrangian of the theory, the planar amplitudes exhibit a dual superconformal symmetry. The presence of this additional symmetry imposes strong restrictions on the amplitudes and is connected to a duality relating scattering amplitudes to Wilson loops defined on polygonal light-like contours. The combination of the superconformal and dual superconformal symmetries gives rise to a Yangian, an algebraic structure which is known to be related to the appearance of integrability in other regimes of the theory. We discuss two dual formulations of the symmetry and address the classification of its invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alday, L.F.: Review of AdS/CFT integrability, chapter V.3: scattering amplitudes at strong coupling. Lett. Math. Phys. Published in this volume. arxiv:1012.4003

  2. Roiban, R.: Review of AdS/CFT integrability, chapter V. 1: scattering amplitudes—a brief introduction. Lett. Math. Phys. Published in this volume. arxiv:1012.4001

  3. Parke S.J., Taylor T.R.: Perturbative QCD utilizing extended supersymmetry. Phys. Lett. B 157, 81 (1985). doi:10.1016/0370-2693(85)91216-X

    Article  ADS  Google Scholar 

  4. Kunszt Z.: Combined use of the Calkul method and N = 1 supersymmetry to calculate QCD six Parton processes. Nucl. Phys. B 271, 333 (1986)

    ADS  Google Scholar 

  5. Anastasiou C., Bern Z., Dixon L.J., Kosower D.A.: Planar amplitudes in maximally supersymmetric Yang–Mills theory. Phys. Rev. Lett. 91, 251602 (2003). doi:10.1103/PhysRevLett.91.251602 (hep-th/0309040)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bern Z., Dixon L.J., Smirnov V.A.: Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond. Phys. Rev. D 72, 085001 (2005). doi:10.1103/PhysRevD.72.085001 (hep-th/0505205)

    Article  MathSciNet  ADS  Google Scholar 

  7. Drummond J.M., Henn J., Smirnov V.A., Sokatchev E.: Magic identities for conformal four-point integrals. JHEP 0701, 064 (2007). doi:10.1088/1126-6708/2007/01/064 (hep-th/0607160)

    Article  MathSciNet  ADS  Google Scholar 

  8. Broadhurst D.J.: Summation of an infinite series of ladder diagrams. Phys. Lett. B 307, 132 (1993). doi:10.1016/0370-2693(93)90202-S

    Article  MathSciNet  ADS  Google Scholar 

  9. Lipatov L.N.: Duality symmetry of Reggeon interactions in multicolour QCD. Nucl. Phys. B 548, 328 (1999). doi:10.1016/S0550-3213(99)00133-9 (hep-ph/9812336)

    Article  ADS  Google Scholar 

  10. Bern Z., Czakon M., Dixon L.J., Kosower D.A., Smirnov V.A.: The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang–Mills theory. Phys. Rev. D 75, 085010 (2007). doi:10.1103/PhysRevD.75.085010 (hep-th/0610248)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bern Z., Carrasco J.J.M., Johansson H., Kosower D.A.: Maximally supersymmetric planar Yang–Mills amplitudes at five loops. Phys. Rev. D 76, 125020 (2007). doi:10.1103/PhysRevD.76.125020 (arxiv:0705.1864)

    Article  MathSciNet  ADS  Google Scholar 

  12. Alday, L.F., Henn, J.M., Plefka, J., Schuster, T.: Scattering into the fifth dimension of \({\mathcal{N}} = 4\) super Yang–Mills. arxiv:0908.0684

  13. Bern Z., Dixon L., Kosower D., Roiban R., Spradlin M., Vergu C., Volovich A.: The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang–Mills theory. Phys. Rev. D 78, 045007 (2008). doi:10.1103/PhysRevD.78.045007 (arxiv:0803.1465)

    Article  MathSciNet  ADS  Google Scholar 

  14. Henn J.M., Naculich S.G., Schnitzer H.J., Spradlin M.: Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits. JHEP 1004, 038 (2010). doi:10.1007/JHEP04(2010)038 (arxiv:1001.1358)

    Article  MathSciNet  ADS  Google Scholar 

  15. Boels R.H.: No triangles on the moduli space of maximally supersymmetric gauge theory. JHEP 1005, 046 (2010). doi:10.1007/JHEP05(2010)046 (arxiv:1003.2989)

    Article  MathSciNet  ADS  Google Scholar 

  16. Henn J.M., Naculich S.G., Schnitzer H.J., Spradlin M.: More loops and legs in Higgs-regulated N=4 SYM amplitudes. JHEP 1008, 002 (2010). doi:10.1007/JHEP08(2010)002 (arxiv:1004.5381)

    Article  MathSciNet  ADS  Google Scholar 

  17. Bern Z., Carrasco J.J., Dennen T., Huang Y.-t., Ita H.: Generalized unitarity and six-dimensional helicity. Phys. Rev. D 83, 085022 (2011). doi:10.1103/PhysRevD.83.085022 (arxiv:1010.0494)

    Article  ADS  Google Scholar 

  18. Caron-Huot, S., O’Connell, D.: Spinor helicity and dual conformal symmetry in ten dimensions. arxiv:1010.5487

  19. Dennen T., Huang Y.-t.: Dual conformal properties of six-dimensional maximal super Yang–Mills amplitudes. JHEP 1101, 140 (2011). doi:10.1007/JHEP01(2011)140 (arxiv:1010.5874)

    Article  MathSciNet  ADS  Google Scholar 

  20. Akhoury R.: Mass divergences of wide angle scattering amplitudes. Phys. Rev. D 19, 1250 (1979). doi:10.1103/PhysRevD.19.1250

    Article  ADS  Google Scholar 

  21. Mueller A.H.: On the asymptotic behavior of the Sudakov form-factor. Phys. Rev. D 20, 2037 (1979). doi:10.1103/PhysRevD.20.2037

    Article  MathSciNet  ADS  Google Scholar 

  22. Collins J.C.: Algorithm to compute corrections to the Sudakov form-factor. Phys. Rev. D 22, 1478 (1980). doi:10.1103/PhysRevD.22.1478

    Article  ADS  Google Scholar 

  23. Sen A.: Asymptotic behavior of the Sudakov form-factor in QCD. Phys. Rev. D 24, 3281 (1981). doi:10.1103/PhysRevD.24.3281

    Article  ADS  Google Scholar 

  24. Sterman G.: Summation of large corrections to short distance Hadronic cross-sections. Nucl. Phys. B 281, 310 (1987). doi:10.1016/0550-3213(87)90258-6

    Article  ADS  Google Scholar 

  25. Botts J., Sterman G.: Hard elastic scattering in QCD: leading behavior. Nucl. Phys. B 325, 62 (1989). doi:10.1016/0550-3213(89)90372-6

    Article  ADS  Google Scholar 

  26. Catani S., Trentadue L.: Resummation of the QCD perturbative series for hard processes. Nucl. Phys. B 327, 323 (1989). doi:10.1016/0550-3213(89)90273-3

    Article  ADS  Google Scholar 

  27. Korchemsky G.P.: Sudakov form-factor in QCD. Phys. Lett. B 220, 629 (1989). doi:10.1016/0370-2693(89)90799-5

    Article  MathSciNet  ADS  Google Scholar 

  28. Korchemsky G.P.: Double logarithmic asymptotics in QCD. Phys. Lett. B 217, 330 (1989). doi:10.1016/0370-2693(89)90876-9

    Article  MathSciNet  ADS  Google Scholar 

  29. Magnea L., Sterman G.: Analytic continuation of the Sudakov form-factor in QCD. Phys. Rev. D 42, 4222 (1990). doi:10.1103/PhysRevD.42.4222

    Article  ADS  Google Scholar 

  30. Korchemsky G.P., Marchesini G.: Resummation of large infrared corrections using Wilson loops. Phys. Lett. B 313, 433 (1993). doi:10.1016/0370-2693(93)90015-A

    Article  ADS  Google Scholar 

  31. Catani S.: The singular behaviour of QCD amplitudes at two-loop order. Phys. Lett. B 427, 161 (1998). doi:10.1016/S0370-2693(98)00332-3 (hep-ph/9802439)

    Article  ADS  Google Scholar 

  32. Sterman G., Tejeda-Yeomans M.E.: Multi-loop amplitudes and resummation. Phys. Lett. B 552, 48 (2003). doi:10.1016/S0370-2693(02)03100-3 (hep-ph/0210130)

    Article  ADS  MATH  Google Scholar 

  33. Ivanov S.V., Korchemsky G.P., Radyushkin A.V.: Infrared asymptotics of perturbative QCD: contour gauges. Yad. Fiz. 44, 230 (1986)

    Google Scholar 

  34. Korchemsky G.P., Marchesini G.: Structure function for large x and renormalization of Wilson loop. Nucl. Phys. B 406, 225 (1993). doi:10.1016/0550-3213(93)90167-N (hep-ph/9210281)

    Article  ADS  Google Scholar 

  35. Cachazo F., Spradlin M., Volovich A.: Iterative structure within the five-particle two-loop amplitude. Phys. Rev. D 74, 045020 (2006). doi:10.1103/PhysRevD.74.045020 (hep-th/0602228)

    Article  ADS  Google Scholar 

  36. Bern Z., Czakon M., Kosower D.A., Roiban R., Smirnov V.A.: Two-loop iteration of five-point \({\mathcal{N}} = 4\) super-Yang–Mills amplitudes. Phys. Rev. Lett. 97, 181601 (2006). doi:10.1103/PhysRevLett.97.181601 (hep-th/0604074)

    Article  MathSciNet  ADS  Google Scholar 

  37. Spradlin M., Volovich A., Wen C.: Three-loop leading singularities and BDS ansatz for five particles. Phys. Rev. D 78, 085025 (2008). doi:10.1103/PhysRevD.78.085025 (arxiv:0808.1054)

    Article  ADS  Google Scholar 

  38. Korchemskaya I.A., Korchemsky G.P.: Evolution equation for gluon Regge trajectory. Phys. Lett. B 387, 346 (1996). doi:10.1016/0370-2693(96)01016-7 (hep-ph/9607229)

    Article  ADS  Google Scholar 

  39. Alday L.F., Maldacena J.M.: Gluon scattering amplitudes at strong coupling. JHEP 0706, 064 (2007) (arxiv:0705.0303)

    Article  MathSciNet  ADS  Google Scholar 

  40. Drummond J.M., Korchemsky G.P., Sokatchev E.: Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B 795, 385 (2008). doi:10.1016/j.nuclphysb.2007.11.041 (arxiv:0707.0243)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Brandhuber A., Heslop P., Travaglini G.: MHV amplitudes in \({\mathcal{N}} = 4\) super Yang–Mills and Wilson loops. Nucl. Phys. B 794, 231 (2008). doi:10.1016/j.nuclphysb.2007.11.007 (arxiv:0707.1153)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Drummond J. M., Henn J., Korchemsky G.P., Sokatchev E.: On planar gluon amplitudes/Wilson loops duality. Nucl. Phys. B 795, 52 (2008). doi:10.1016/j.nuclphysb.2007.11.002 (arxiv:0709.2368)

    Article  ADS  Google Scholar 

  43. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E.: Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes. arxiv:0712.1223

  44. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E.: The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude. Phys. Lett. B 662, 456 (2008). doi:10.1016/j.physletb.2008.03.032 (arxiv:0712.4138)

    Article  MathSciNet  ADS  Google Scholar 

  45. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E.: Hexagon Wilson loop = six-gluon MHV amplitude. Nucl. Phys. B 815, 142 (2009). doi:10.1016/j.nuclphysb.2009.02.015 (arxiv:0803.1466)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Del Duca, V., Duhr, C., Smirnov, V.A.: The two-loop hexagon Wilson loop in N = 4 SYM. arxiv:1003.1702

  47. Anastasiou C., Brandhuber A., Heslop P., Khoze V.V., Spence B., Travaglini G.: Two-loop polygon Wilson loops in \({\mathcal{N}} = 4\) SYM. JHEP 0905, 115 (2009). doi:10.1088/1126-6708/2009/05/115 (arxiv:0902.2245)

    Article  MathSciNet  ADS  Google Scholar 

  48. Vergu C.: Higher point MHV amplitudes in \({\mathcal{N}} = 4\) supersymmetric Yang–Mills theory. Phys. Rev. D 79, 125005 (2009). doi:10.1103/PhysRevD.79.125005 (arxiv:0903.3526)

    Article  MathSciNet  ADS  Google Scholar 

  49. Vergu, C.: The two-loop MHV amplitudes in \({\mathcal{N} = 4}\) supersymmetric Yang–Mills theory. arxiv:0908.2394

  50. Mason L., Skinner D.: The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space. JHEP 1012, 018 (2010). doi:10.1007/JHEP12(2010)018 (arxiv:1009.2225)

    Article  MathSciNet  ADS  Google Scholar 

  51. Caron-Huot, S.: Notes on the scattering amplitude/Wilson loop duality. arxiv:1010.1167

  52. Drummond J.M., Henn J.M.: All tree-level amplitudes in \({\mathcal{N} = 4}\) SYM. JHEP 0904, 018 (2009). doi:10.1088/1126-6708/2009/04/018 (arxiv:0808.2475)

    Article  MathSciNet  ADS  Google Scholar 

  53. Brandhuber A., Heslop P., Travaglini G.: A note on dual superconformal symmetry of the \({\mathcal{N}=4}\) super Yang–Mills S-matrix. Phys. Rev. D 78, 125005 (2008). doi:10.1103/PhysRevD.78.125005 (arxiv:0807.4097)

    Article  MathSciNet  ADS  Google Scholar 

  54. Arkani-Hamed, N., Cachazo, F., Kaplan, J.: What is the simplest quantum field theory? arxiv:0808.1446

  55. Elvang H., Freedman D.Z., Kiermaier M.: Recursion relations, generating functions, and unitarity sums in N = 4 SYM theory. JHEP 0904, 009 (2009). doi:10.1088/1126-6708/2009/04/009 (arxiv:0808.1720)

    Article  MathSciNet  ADS  Google Scholar 

  56. Britto R., Cachazo F., Feng B.: New recursion relations for tree amplitudes of gluons. Nucl. Phys. B 715, 499 (2005). doi:10.1016/j.nuclphysb.2005.02.030 (hep-th/ 0412308)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Britto R., Cachazo F., Feng B., Witten E.: Direct proof of tree-level recursion relation in Yang–Mills theory. Phys. Rev. Lett. 94, 181602 (2005). doi:10.1103/PhysRevLett.94.181602 (hep-th/0501052)

    Article  MathSciNet  ADS  Google Scholar 

  58. Witten E.: Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189 (2004). doi:10.1007/s00220-004-1187-3 (hep-th/0312171)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Beisert, N.: Review of AdS/CFT integrability, chapter VI. 1: superconformal algebra. Lett. Math. Phys. Published in this volume. arxiv:1012.4004

  60. Bargheer, T., Beisert, N., Galleas, W., Loebbert, F., McLoughlin, T.: Exacting \({\mathcal{N}} = 4\) superconformal symmetry. arxiv:0905.3738

  61. Korchemsky, G.P., Sokatchev, E.: Symmetries and analytic properties of scattering amplitudes in \({\mathcal{N}} = 4\) SYM theory. arxiv:0906.1737

  62. Sever, A., Vieira, P.: Symmetries of the \({\mathcal{N}} = 4\) SYM S-matrix. arxiv:0908.2437

  63. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E.: Dual superconformal symmetry of scattering amplitudes in \({\mathcal{N} = 4}\) super-Yang–Mills theory. arxiv:0807.1095

  64. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E. Generalized unitarity for \({\mathcal{N} = 4}\) super-amplitudes. arxiv:0808.0491

  65. Bern Z., Dixon L.J., Kosower D.A.: All next-to-maximally helicity-violating one-loop gluon amplitudes in \({\mathcal{N} = 4}\) super-Yang–Mills theory. Phys. Rev. D 72, 045014 (2005). doi:10.1103/PhysRevD.72.045014 (hep-th/0412210)

    Article  MathSciNet  ADS  Google Scholar 

  66. Brandhuber, A., Heslop, P., Travaglini, G.: Proof of the dual conformal anomaly of one-loop amplitudes in \({\mathcal{N} = 4}\) SYM. arxiv:0906.3552

  67. Kosower D.A., Roiban R., Vergu C.: The six-point nmhv amplitude in maximally supersymmetric Yang–Mills theory. Phys. Rev. D 83, 065018 (2011). doi:10.1103/PhysRevD.83.065018 (arxiv:1009.1376)

    Article  ADS  Google Scholar 

  68. Beisert N., Henn J., McLoughlin T., Plefka J.: One-loop superconformal and Yangian symmetries of scattering amplitudes in N = 4 super Yang–Mills. JHEP 1004, 085 (2010). doi:10.1007/JHEP04(2010)085 (arxiv:1002.1733)

    Article  MathSciNet  ADS  Google Scholar 

  69. Drummond J.M., Henn J.M., Plefka J.: Yangian symmetry of scattering amplitudes in \({\mathcal{N} = 4}\) super Yang–Mills theory. JHEP 0905, 046 (2009). doi:10.1088/1126-6708/2009/05/046 (arxiv:0902.2987)

    Article  MathSciNet  ADS  Google Scholar 

  70. Dolan L., NappiC.R. Witten E.: A relation between approaches to integrability in superconformal Yang–Mills theory. JHEP 0310, 017 (2003). doi:10.1088/1126-6708/2003/10/017

    Article  ADS  Google Scholar 

  71. Dolan, L., Nappi, C.R., Witten, E.: Yangian symmetry in D = 4 superconformal Yang–Mills theory. hep-th/0401243

  72. Drummond, J.M., Ferro, L.: Yangians, Grassmannians and T-duality. arxiv:1001.3348

  73. Hodges, A.: Eliminating spurious poles from gauge-theoretic amplitudes. arxiv:0905. 1473

  74. Berkovits N., Maldacena J.: Fermionic T-duality, dual superconformal symmetry, and the amplitude/Wilson loop connection. JHEP 0809, 062 (2008). doi:10.1088/1126-6708/2008/09/062 (arxiv:0807.3196)

    Article  MathSciNet  ADS  Google Scholar 

  75. Beisert N., Ricci R., Tseytlin A.A., Wolf M.: Dual superconformal symmetry from AdS5 × S5 superstring integrability. Phys. Rev. D 78, 126004 (2008). doi:10.1103/PhysRevD.78.126004 (arxiv:0807.3228)

    Article  MathSciNet  ADS  Google Scholar 

  76. Beisert N.: T-duality, dual conformal symmetry and integrability for strings on AdS5 × S5. Fortschr. Phys. 57, 329 (2009) arxiv:0903.0609

    Article  MathSciNet  MATH  Google Scholar 

  77. Arkani-Hamed, N., Cachazo, F., Cheung, C., Kaplan, J.: A duality for the S matrix. arxiv:0907.5418

  78. Korchemsky, G.P., Sokatchev, E.: Twistor transform of all tree amplitudes in \({\mathcal{N}} = 4\) SYM theory. arxiv:0907.4107

  79. Drummond, J.M., Ferro, L.: The Yangian origin of the Grassmannian integral. arxiv:1002.4622

  80. Korchemsky, G.P., Sokatchev, E.: Superconformal invariants for scattering amplitudes in N=4 SYM theory. arxiv:1002.4625

  81. Mason, L., Skinner, D.: Dual superconformal invariance, momentum twistors and Grassmannians. arxiv:0909.0250

  82. Arkani-Hamed N., Cachazo F., Cheung C.: The Grassmannian origin of dual superconformal invariance. JHEP 1003, 036 (2010). doi:10.1007/JHEP03(2010)036 (arxiv:0909.0483)

    Article  MathSciNet  ADS  Google Scholar 

  83. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Caron-Huot, S., Trnka, J.: The all-loop integrand for scattering amplitudes in planar N = 4 SYM. arxiv:1008.2958

  84. Drummond, J.M., Henn, J.M.: Simple loop integrals and amplitudes in N = 4 SYM. arxiv:1008.2965

  85. Drummond, J.M., Ferro, L., Ragoucy, E.: Yangian symmetry of light-like Wilson loops. arxiv:1011.4264

  86. Alday, L.F., Maldacena, J.: Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space. arxiv:0904.0663

  87. Alday, L.F., Gaiotto, D., Maldacena, J., Sever, A., Vieira, P.: An operator product expansion for polygonal null Wilson loops. arxiv:1006.2788

  88. Gaiotto, D., Maldacena, J., Sever, A., Vieira, P.: Bootstrapping null polygon Wilson loops. arxiv:1010.5009

  89. Drummond J.M., Henn J.M., Trnka J.: New differential equations for on-shell loop integrals. JHEP 1104, 083 (2011). doi:10.1007/JHEP04(2011)083 (arxiv:1010.3679)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Drummond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drummond, J.M. Review of AdS/CFT Integrability, Chapter V.2: Dual Superconformal Symmetry. Lett Math Phys 99, 481–505 (2012). https://doi.org/10.1007/s11005-011-0519-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0519-4

Mathematics Subject Classification (2010)

Keywords

Navigation