L ∞-Algebras from Multisymplectic Geometry
- 172 Downloads
- 23 Citations
Abstract
A manifold is multisymplectic, or more specifically n-plectic, if it is equipped with a closed nondegenerate differential form of degree n + 1. In previous work with Baez and Hoffnung, we described how the ‘higher analogs’ of the algebraic and geometric structures found in symplectic geometry should naturally arise in 2-plectic geometry. In particular, just as a symplectic manifold gives a Poisson algebra of functions, any 2-plectic manifold gives a Lie 2-algebra of 1-forms and functions. Lie n-algebras are examples of L ∞-algebras: graded vector spaces equipped with a collection of skew-symmetric multi-brackets that satisfy a generalized Jacobi identity. Here, we generalize our previous result. Given an n-plectic manifold, we explicitly construct a corresponding Lie n-algebra on a complex consisting of differential forms whose multi-brackets are specified by the n-plectic structure. We also show that any n-plectic manifold gives rise to another kind of algebraic structure known as a differential graded Leibniz algebra. We conclude by describing the similarities between these two structures within the context of an open problem in the theory of strongly homotopy algebras. We also mention a possible connection with the work of Barnich, Fulp, Lada, and Stasheff on the Gelfand–Dickey–Dorfman formalism.
Mathematics Subject Classification (2000)
53D05 17B55 70S05Keywords
strongly homotopy Lie algebras multisymplectic geometry classical field theoryPreview
Unable to display preview. Download preview PDF.
References
- 1.Ammar, M., Poncin, N.: Coalgebraic approach to the Loday infinity category, stem differential for 2n-ary graded and homotopy algebras. arXiv:0809.4328Google Scholar
- 2.Anderson, I.M.: Introduction to the variational bicomplex. In: Contemporary Mathematics. Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), vol. 132, pp. 51–73. American Mathematical Society, Providence, RI (1992)Google Scholar
- 3.Baez J., Crans A.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004) arXiv:math/0307263MathSciNetzbMATHGoogle Scholar
- 4.Baez J., Hoffnung A., Rogers C.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293, 701–715 (2010) arXiv:0808.0246MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Baez J., Rogers C.: Categorified symplectic geometry and the string Lie 2-algebra. Homol. Homotopy Appl. 12, 221–236 (2010) arXiv:0901.4721MathSciNetzbMATHGoogle Scholar
- 6.Barnich G., Fulp R., Lada T., Stasheff J.: The sh Lie structure of Poisson brackets in field theory. Commun. Math. Phys. 191, 585–601 (1998) arXiv:hep-th/9702176MathSciNetADSzbMATHCrossRefGoogle Scholar
- 7.Bowick M.J., Rajeev S.G.: Closed bosonic string theory. Nucl. Phys. B 293, 348–384 (1987)MathSciNetADSCrossRefGoogle Scholar
- 8.Bridges T.J., Hydon P.E., Lawson J.K.: Multisymplectic structures and the variational bicomplex. Math. Proc. Cambridge Philos. Soc. 148, 159–178 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Cantrijn F., Ibort A., de León M.: Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Math. Univ. Politec. Torino 54, 225–236 (1996)zbMATHGoogle Scholar
- 10.Cantrijn F., Ibort A., de León M.: On the geometry of multisymplectic manifolds. J. Aust. Math. Soc. Ser. A 66, 303–330 (1999)zbMATHCrossRefGoogle Scholar
- 11.Cariñena J.F., Crampin M., Ibort L.A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345–374 (1991)zbMATHCrossRefGoogle Scholar
- 12.Dickey, L.A.: Poisson brackets with divergence terms in field theories: two examples. arXiv:solv-int/9703001Google Scholar
- 13.Filippov V.T.: n-Lie algebras. Sibirsk. Math. Zh 26, 126–140 (1985)ADSzbMATHGoogle Scholar
- 14.Forger M., Paufler C., Römer H.: The Poisson bracket for Poisson forms in multisymplectic field theory. Rev. Math. Phys. 15, 705–744 (2003) arXiv:math-ph/0202043MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Gautheron P.: Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37, 103–116 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 16.Gelfand I.M., Dickey L.A.: A Lie algebra structure in the formal calculus of variations. Funktsional. Anal. Priloz 10, 18–25 (1976)Google Scholar
- 17.Gelfand I.M., Dorfman I.Ya.: Hamiltonian operators and algebraic structures associated with them. Funktsional. Anal. Priloz. 13, 13–30 (1979)MathSciNetGoogle Scholar
- 18.Gotay, M., Isenberg, J., Marsden, J., Montgomery, R.: Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. arXiv:physics/9801019Google Scholar
- 19.Hélein, F.: Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory. In: Bahri, A. et al. (eds.) Noncompact Problems at the Intersection of Geometry. AMS, Providence, pp. 127–148 (2001). arXiv:math-ph/0212036Google Scholar
- 20.Ibort, A.: Multisymplectic geometry: generic and exceptional. In: Grácia, X. et al., (eds.) Proceedings of the IX Fall Workshop on Geometry and Physics, Vilanova i la Geltrú, Publicaciones de la RSME, vol. 3, Real Sociedad Matemática Española, Madrid, pp. 79–88 (2001)Google Scholar
- 21.Iuliu-Lazaroiu, C., McNamee, D., Sämann, C., Zejak, A.: Strong Homotopy Lie Algebras, Generalized Nahm Equations, and Multiple M2-Branes. arXiv:0901.3905Google Scholar
- 22.Kijowski J.: A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys 30, 99–128 (1973)MathSciNetADSCrossRefGoogle Scholar
- 23.Kosmann-Schwarzbach Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 24.Lada T., Markl M.: Strongly homotopy Lie algebras. Commun. Algebra. 23, 2147–2161 (1995) arXiv:hep-th/9406095MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Lada T., Stasheff J.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32(7), 1087–1103 (1993) hep-th/9209099MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Diff. Geom. 45, 547–574 (1997)MathSciNetGoogle Scholar
- 27.Merkulov S.A.: On the geometric quantization of bosonic string. Class. Quant. Grav. 9, 2267–2276 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 28.Nakajima H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76, 365–416 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Nakajima H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145–238 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 30.Nambu Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)MathSciNetADSCrossRefGoogle Scholar
- 31.Román-Roy N.: Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories. SIGMA. 5, 25 (2009) arXiv:math-ph/0506022Google Scholar
- 32.Rogers, C.: 2-plectic geometry, Courant algebroids, and categorified prequantization. arXiv:1009.2975 [math-ph]Google Scholar
- 33.Roytenberg D., Weinstein A.: Courant algebroids and strongly homotopy Lie algebras. Lett. Math. Phys. 46, 81–93 (1998) arXiv:math/9802118MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Roytenberg, D.: On weak Lie 2-algebras. In: Kielanowski, P. et al., (eds.) XXVI Workshop on Geometrical Methods in Physics. AIP Conference Proceedings, vol. 956, pp. 180–198. American Institute of Physics, Melville (2007). arXiv:0712.3461Google Scholar
- 35.Ševera, P.: Letter to Alan Weinstein. http://sophia.dtp.fmph.uniba.sk/~severa/letters/
- 36.Swann A.: Hyper-Kähler and quaternionic K ähler geometry. Math. Ann. 289, 421–450 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Uchino, K.: Derived brackets and sh Leibniz algebras. arXiv:0902.0044Google Scholar
- 38.Zambon, M.: L ∞-algebras and higher analogues of Dirac structures. arXiv:1003.1004Google Scholar