Skip to main content
Log in

L -Algebras from Multisymplectic Geometry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A manifold is multisymplectic, or more specifically n-plectic, if it is equipped with a closed nondegenerate differential form of degree n + 1. In previous work with Baez and Hoffnung, we described how the ‘higher analogs’ of the algebraic and geometric structures found in symplectic geometry should naturally arise in 2-plectic geometry. In particular, just as a symplectic manifold gives a Poisson algebra of functions, any 2-plectic manifold gives a Lie 2-algebra of 1-forms and functions. Lie n-algebras are examples of L -algebras: graded vector spaces equipped with a collection of skew-symmetric multi-brackets that satisfy a generalized Jacobi identity. Here, we generalize our previous result. Given an n-plectic manifold, we explicitly construct a corresponding Lie n-algebra on a complex consisting of differential forms whose multi-brackets are specified by the n-plectic structure. We also show that any n-plectic manifold gives rise to another kind of algebraic structure known as a differential graded Leibniz algebra. We conclude by describing the similarities between these two structures within the context of an open problem in the theory of strongly homotopy algebras. We also mention a possible connection with the work of Barnich, Fulp, Lada, and Stasheff on the Gelfand–Dickey–Dorfman formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, M., Poncin, N.: Coalgebraic approach to the Loday infinity category, stem differential for 2n-ary graded and homotopy algebras. arXiv:0809.4328

  2. Anderson, I.M.: Introduction to the variational bicomplex. In: Contemporary Mathematics. Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), vol. 132, pp. 51–73. American Mathematical Society, Providence, RI (1992)

  3. Baez J., Crans A.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004) arXiv:math/0307263

    MathSciNet  MATH  Google Scholar 

  4. Baez J., Hoffnung A., Rogers C.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293, 701–715 (2010) arXiv:0808.0246

    Article  MathSciNet  MATH  Google Scholar 

  5. Baez J., Rogers C.: Categorified symplectic geometry and the string Lie 2-algebra. Homol. Homotopy Appl. 12, 221–236 (2010) arXiv:0901.4721

    MathSciNet  MATH  Google Scholar 

  6. Barnich G., Fulp R., Lada T., Stasheff J.: The sh Lie structure of Poisson brackets in field theory. Commun. Math. Phys. 191, 585–601 (1998) arXiv:hep-th/9702176

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bowick M.J., Rajeev S.G.: Closed bosonic string theory. Nucl. Phys. B 293, 348–384 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bridges T.J., Hydon P.E., Lawson J.K.: Multisymplectic structures and the variational bicomplex. Math. Proc. Cambridge Philos. Soc. 148, 159–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cantrijn F., Ibort A., de León M.: Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Math. Univ. Politec. Torino 54, 225–236 (1996)

    MATH  Google Scholar 

  10. Cantrijn F., Ibort A., de León M.: On the geometry of multisymplectic manifolds. J. Aust. Math. Soc. Ser. A 66, 303–330 (1999)

    Article  MATH  Google Scholar 

  11. Cariñena J.F., Crampin M., Ibort L.A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345–374 (1991)

    Article  MATH  Google Scholar 

  12. Dickey, L.A.: Poisson brackets with divergence terms in field theories: two examples. arXiv:solv-int/9703001

  13. Filippov V.T.: n-Lie algebras. Sibirsk. Math. Zh 26, 126–140 (1985)

    ADS  MATH  Google Scholar 

  14. Forger M., Paufler C., Römer H.: The Poisson bracket for Poisson forms in multisymplectic field theory. Rev. Math. Phys. 15, 705–744 (2003) arXiv:math-ph/0202043

    Article  MathSciNet  MATH  Google Scholar 

  15. Gautheron P.: Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37, 103–116 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gelfand I.M., Dickey L.A.: A Lie algebra structure in the formal calculus of variations. Funktsional. Anal. Priloz 10, 18–25 (1976)

    Google Scholar 

  17. Gelfand I.M., Dorfman I.Ya.: Hamiltonian operators and algebraic structures associated with them. Funktsional. Anal. Priloz. 13, 13–30 (1979)

    MathSciNet  Google Scholar 

  18. Gotay, M., Isenberg, J., Marsden, J., Montgomery, R.: Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. arXiv:physics/9801019

  19. Hélein, F.: Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory. In: Bahri, A. et al. (eds.) Noncompact Problems at the Intersection of Geometry. AMS, Providence, pp. 127–148 (2001). arXiv:math-ph/0212036

  20. Ibort, A.: Multisymplectic geometry: generic and exceptional. In: Grácia, X. et al., (eds.) Proceedings of the IX Fall Workshop on Geometry and Physics, Vilanova i la Geltrú, Publicaciones de la RSME, vol. 3, Real Sociedad Matemática Española, Madrid, pp. 79–88 (2001)

  21. Iuliu-Lazaroiu, C., McNamee, D., Sämann, C., Zejak, A.: Strong Homotopy Lie Algebras, Generalized Nahm Equations, and Multiple M2-Branes. arXiv:0901.3905

  22. Kijowski J.: A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys 30, 99–128 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  23. Kosmann-Schwarzbach Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lada T., Markl M.: Strongly homotopy Lie algebras. Commun. Algebra. 23, 2147–2161 (1995) arXiv:hep-th/9406095

    Article  MathSciNet  MATH  Google Scholar 

  25. Lada T., Stasheff J.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32(7), 1087–1103 (1993) hep-th/9209099

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Diff. Geom. 45, 547–574 (1997)

    MathSciNet  Google Scholar 

  27. Merkulov S.A.: On the geometric quantization of bosonic string. Class. Quant. Grav. 9, 2267–2276 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Nakajima H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76, 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakajima H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145–238 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Nambu Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  31. Román-Roy N.: Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories. SIGMA. 5, 25 (2009) arXiv:math-ph/0506022

    Google Scholar 

  32. Rogers, C.: 2-plectic geometry, Courant algebroids, and categorified prequantization. arXiv:1009.2975 [math-ph]

  33. Roytenberg D., Weinstein A.: Courant algebroids and strongly homotopy Lie algebras. Lett. Math. Phys. 46, 81–93 (1998) arXiv:math/9802118

    Article  MathSciNet  MATH  Google Scholar 

  34. Roytenberg, D.: On weak Lie 2-algebras. In: Kielanowski, P. et al., (eds.) XXVI Workshop on Geometrical Methods in Physics. AIP Conference Proceedings, vol. 956, pp. 180–198. American Institute of Physics, Melville (2007). arXiv:0712.3461

  35. Ševera, P.: Letter to Alan Weinstein. http://sophia.dtp.fmph.uniba.sk/~severa/letters/

  36. Swann A.: Hyper-Kähler and quaternionic K ähler geometry. Math. Ann. 289, 421–450 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Uchino, K.: Derived brackets and sh Leibniz algebras. arXiv:0902.0044

  38. Zambon, M.: L -algebras and higher analogues of Dirac structures. arXiv:1003.1004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Rogers.

Additional information

This work was partially supported by FQXi grant RFP2-08-04.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, C.L. L -Algebras from Multisymplectic Geometry. Lett Math Phys 100, 29–50 (2012). https://doi.org/10.1007/s11005-011-0493-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0493-x

Mathematics Subject Classification (2000)

Keywords

Navigation