Skip to main content

Advertisement

Log in

A Three-Dimensional Geological Structure Modeling Framework and Its Application in Machine Learning

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Three-dimensional geological structure analysis is fundamental to geoscientific research. With the application of artificial intelligence in geological structure analysis, deep learning methods raise the demand for diversity in labeled structural learning sets. To improve the generalizability and flexibility of the training sets, a three-dimensional structural modeling framework is established in this paper. Firstly, the three-dimensional fold pattern is approached by the Fourier series and Gaussian equation. Secondly, to supplement the deficiency of the stochastic simulation algorithm in simulating listric faults, an ellipsoidal surface method with random perturbation is established. Thirdly, the near-field displacement of oblique-slip faults is modeled under the assumption of rotational consistency. Finally, the fault drag is defined by the magnitude and direction of near-field displacement and the drag radius. By randomly combining parameters in some predefined ranges, the proposed modeling framework can automatically construct numerous structural models with rich geological information. To validate the applicability of the proposed modeling framework, the generated models are used as learning sets to train a U-shaped fully convolutional neural network. Experiments using synthetic and field seismic data for fault interpretation show that the trained network based on the proposed modeling framework can provide better fault interpretation results compared to conventional algorithms. These results show that the proposed geological models have better generalizability and can effectively improve the applicability of machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Alexander B (1995) Conical drag folds as kinematic indicators for strike-slip fault motion. J Struct Geol 17(11):1497–1506

    Article  Google Scholar 

  • Anders U, Waldeland A, Charles J, Leiv G, Anne S (2018) Convolutional neural networks for automated seismic interpretation. Lead Edge 37:529–537

    Article  Google Scholar 

  • Aug C, Chiles J, Courrioux G, Lajaunie C (2005) Geological modelling and uncertainty: the potential-field method. Springer Netherlands, Dordrecht, pp 145–154. ISBN: 978-1-4020-3610-1

  • Badrieh F (2018) Fourier series and periodic functions. Springer, Cham, pp 91–123. ISBN: 978-3-319-71437-0

  • Barnett J, Mortimer J, Rippon J, Walsh J, Watterson J (1987) Displacement geometry in the volume containing a single normal fault. AAPG Bull 71(8):925–937

    Google Scholar 

  • Ben Thompson T, Meade BJ, DeVries Phoebe MR (2017) Enabling large-scale viscoelastic calculations via neural network acceleration. Geophys Res Lett 44:2662–2669

    Article  Google Scholar 

  • Bergen K, Johnson P, Maarten V, Beroza G (2019) Machine learning for data-driven discovery in solid earth geoscience. Science 363(6433):eaau0323

  • Bertrand R, Hulbert C, Lubbers N, Barros K, Humphreys C, Johnson A (2017) Machine learning predicts laboratory earthquakes. Geophys Res Lett 44:9276–9282

    Article  Google Scholar 

  • Beverly P (2021) Machine learning for medicine. Science 371(6530):687–689

    Google Scholar 

  • Bianco J, Gerstoft P, Olsen B, Lin F (2019) High-resolution seismic tomography of Long Beach, CA using machine learning. Sci Rep 9:1–11

    Article  Google Scholar 

  • Bouteiller L, Charlty J (2020) Semi-supervised multi-facies object retrieval in seismic data. Math Geosci 52:817–846

    Article  Google Scholar 

  • Bruna L, Bezerra F, Souza V, Maia P, Sousa M (2021) High-permeability zones in folded and faulted silicified carbonate rocks implications for karstified carbonate reservoirs. Mar Pet Geol 128:105046

    Article  Google Scholar 

  • Bürgmann R, Pollard D, Martel S (1994) Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J Struct Geol 16(12):1675–1690

    Article  Google Scholar 

  • Cai H, Long Z, Lin W, Li J, Hu X (2021) 3D multinary inversion of CSEM data based on finite element method with unstructured mesh. Geophysics 86(1):E77–E92

    Article  Google Scholar 

  • Caine S, Evans P, Forster B (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Calcagno P, Chils J, Courrioux G, Guillen A (2008) Geological modelling from field data and geological knowledge. Phys Earth Planet Inter 171(1):147–157. ISSN 0031-9201, recent advances in computational geodynamics: theory, numerics and applications

  • Carbonell T, Maestro A, Ruano P, Galindo J (2020) Superposed deformation in the Peninsula Mitre recess (Fuegian thrust-fold belt, Southern Argentina), and implications for orogenic curve kinematics. J Struct Geol 131:103947.1-103947.22

  • Cardozo N, Røe P, Soleng H, Fredman N, Tveranger J, Schueller S (2008) A methodology for efficiently populating faulted corner point grids with strain. Pet Geosci 14(2):205–216

    Article  Google Scholar 

  • Caumon G, Lepage F, Sword C, Mallet J (2004) Building and editing a sealed geological model. Math Geol 36(4):405–424

    Article  Google Scholar 

  • Caumon G, Tertois AL, Zhang L (2007) Elements for stochastic structural perturbation of stratigraphic models. In: EAGE Conference on Petroleum Geostatistics. European Association of Geoscientists & Engineers, cp-32

  • Caumon G, Collon P, De Veslud C, Viseur S, Sausse J (2009) Surface-based 3d modeling of geological structures. Math Geosci 41(8):927–945

    Article  Google Scholar 

  • Caumon G, Gray G, Antoine C, Titeux M (2013) 3D implicit stratigraphic model building from remote sensing data on tetrahedral meshes: theory and application to a regional model of la Popa Basin, NE Mexico. IEEE Trans Geosci Remote Sens 51(3):1613–1621

    Article  Google Scholar 

  • Chen Y, Gilder S, Halim N, Courtillot V (2002) New paleomagnetic constraints on central Asian kinematics: displacement along the Altyn Tagh Fault and rotation of the Qaidam Basin. Tectonics 21(5):61–619

    Article  Google Scholar 

  • Chen S, Tang L, Jin Z, Jia C, Pi X (2004) Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China. Mar Pet Geol 21(8):1027–1042. ISSN: 0264-8172

  • Chen H, Gao J, Jiang X, Gao Z, Zhang W (2021) Optimization-inspired deep learning high-resolution inversion for seismic data. Geophysics 86(3):1–51

    Article  Google Scholar 

  • Cherpeau N, Caumon G (2015) Stochastic structural modelling in sparse data situations. Pet Geosci 21(4):233–247. ISSN: 1354-0793

  • Cherpeau N, Caumon G, Lévy B (2010) Stochastic simulations of fault networks in 3D structural modeling. CR Geosci 342(9):687–694

    Article  Google Scholar 

  • Choi J, Edwards P, Ko K, Kim Y (2016) Definition and classification of fault damage zones: a review and a new methodological approach. Earth Sci Rev 152:70–87

    Article  Google Scholar 

  • Collon P, Steckiewicz W, Pellerin J, Laurent G, Caumon G, Reichart G, Vaute L (2015) 3D geomodelling combining implicit surfaces and Voronoi-based remeshing: a case study in the Lorraine Coal Basin (France). Comput Geosci 77:29–43

    Article  Google Scholar 

  • Cowan J, Beatson K, Ross J, Fright R, McLennan J, Evans R, Carr C, Lane G, Bright V, Gillman J (2003) Practical implicit geological modelling. In: Fifth international mining geology conference. Australian Institute of Mining and Metallurgy Bendigo, Victoria, pp 17–19

  • Cui Y, Guo L (2019a) A wavenumber-domain iterative approach for 3d imaging of magnetic anomalies and gradients with depth constraints. J Geophys Eng 16(6):1032–1047

    Article  Google Scholar 

  • Cui Y, Guo L (2019b) A wavenumber-domain iterative approach for rapid 3-d imaging of gravity anomalies and gradients. IEEE Access 7:34179–34188

    Article  Google Scholar 

  • Deng H, McClay K (2019) Development of extensional fault and fold system: insights from 3D seismic interpretation of the Enderby Terrace, NW shelf of Australia. Mar Pet Geol 104:11–28. ISSN: 0264-8172

  • Ducros M, Nader F (2020) Map-based uncertainty analysis for exploration using basin modeling and machine learning techniques applied to the levant basin petroleum systems, Eastern Mediterranean. Mar Pet Geol 120:104560. ISSN: 0264-8172

  • Ellevset O, Knipe J, Olsen S, Fisher J, Jones G (1998) Fault controlled communication in the Sleipner vest field, Norwegian continental shelf; detailed, quantitative input for reservoir simulation and well planning. Geol Soc Lond Spec Publ 147(1):283–297

    Article  Google Scholar 

  • Evren C, Mark L, Vitaliy O, Jeremie G, Mark J (2018) Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-d geological modeling, a guide for disturbance distribution selection and parameterization. Solid Earth 9(2):385–402

    Article  Google Scholar 

  • Exner U, Mancktelow N, Grasemann B (2004) Progressive development of s-type flanking folds in simple shear. J Struct Geol 26(12):2191–2201

    Article  Google Scholar 

  • Faulkner R, Lewis C, Rutter H (2003) On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in Southeastern Spain. Tectonophysics 367(3):235–251

    Article  Google Scholar 

  • Frank T, Tertois L, Mallet L (2007) 3d-reconstruction of complex geological interfaces from irregularly distributed and noisy point data. Comput Geosci 33(7):932–943

    Article  Google Scholar 

  • Geng Z, Wu X, Shi Y, Fomel S (2020) Deep learning for relative geologic time and seismic horizons. Geophysics 85(4):WA87–WA100

  • Georgsen F, Roe P, Syversveen AR, Lia O (2012) Fault displacement modelling using 3d vector fields. Comput Geosci 16(2):247–259

    Article  Google Scholar 

  • Godefroy G, Caumon G, Ford M, Laurent G, Jackson CA (2018) A parametric fault displacement model to introduce kinematic control into modeling faults from sparse data. Interpretation 6(2):B1–B13

    Article  Google Scholar 

  • Godefroy G, Caumon G, Laurent G, Bonneau F (2019) Structural interpretation of sparse fault data using graph theory and geological rules. Math Geosci 51:1091–1107

    Article  Google Scholar 

  • Goncalves G, Kumaira S, Guadagnin F (2017) A machine learning approach to the potential-field method for implicit modeling of geological structures. Comput Geosci 103:173–182

    Article  Google Scholar 

  • Grasemann B, Stüwe K (2001) The development of flanking folds during simple shear and their use as kinematic indicators. J Struct Geol 23(4):715–724

    Article  Google Scholar 

  • Grasemann B, Stüwe K, Vannay J (2003) Sense and non-sense of shear in flanking structures. J Struct Geol 25(1):19–34

    Article  Google Scholar 

  • Grasemann B, Martel S, Passchier C (2005) Reverse and normal drag along a fault. J Struct Geol 27(6):999–1010

    Article  Google Scholar 

  • Grose L, Laurent G, Aillères L, Armit R, Jessell M, Caumon G (2017) Structural data constraints for implicit modeling of folds. J Struct Geol 104:80–92

    Article  Google Scholar 

  • Grose L, Laurent G, Aillres L, Armit R, Jessell M, Cousin T (2018) Inversion of structural geology data for fold geometry. J Geophys Res Solid Earth 123(8):6318–6333

    Google Scholar 

  • Hai L, Wang Z, Xiao F, Hou L, Jia S, Qiu Z, Ning L, Fu W (2008) The surface rupture zone distribution of the Wenchuan earthquake (Ms8.0) happened on May 12th, 2008. Geol China 35:803–813

    Google Scholar 

  • Hamblin K (1965) Origin of “reverse drag” on the downthrown side of normal faults. Geol Soc Am Bull 76(10):1145–1164

  • Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning. In: International workshop on artificial neural networks. Springer, pp 195–201

  • Hillier J, Schetselaar M, Kemp ED, Perron G (2014) Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Math Geosci 46(8):931–953

    Article  Google Scholar 

  • Hillier M, Wellmann F, Brodaric B, Kemp D, Schetselaar E (2021) Three-dimensional structural geological modeling using graph neural networks. Math Geosci 53:1725–1749

    Article  Google Scholar 

  • Hofmann M, Bornemann O, Fahland S, Heusermann S (2008) Three-dimensional geological and geomechanical modelling of a repository for waste disposal in a domal salt structure. Gospodarka Surowcami Mineralnymi Miner Resour Manag 24(3, 2):63–U16. ISSN: 0860-0953

  • Holden L, Mostad P, Nielsen F, Gjerde J, Townsend C, Ottesen S (2003) Stochastic structural modeling. Math Geol 35(8):899–914

    Google Scholar 

  • Hollund K, Mostad P, Nielsen F, Holden L, Gjerde J, Contursi G, McCann A, Townsend C, Sverdrup E (2002) Havana—a fault modeling tool. In: Norwegian petroleum society special publications, vol 11. Elsevier, pp 157–171

  • Holm-Jensen T, Hansen M (2020) Linear waveform tomography inversion using machine learning algorithms. Math Geosci 52(12):31–50

    Article  Google Scholar 

  • Hu S, Alves TM, Omosanya K, Li W (2021) Geometric and kinematic analysis of normal faults bordering continental shelves: a 3D seismic case study from the northwest South China Sea. Mar Pet Geol 133:105263. ISSN: 0264-8172

  • Huang L, Dong X, Clee E (2017) A scalable deep learning platform for identifying geologic features from seismic attributes. Lead Edge 36(3):249–256

    Article  Google Scholar 

  • Hudleston J (1973) Fold morphology and some geometrical implications of theories of fold development. Tectonophysics 16(1–2):1–46

    Article  Google Scholar 

  • Hudleston P, Treagus S (2010) Information from folds: a review. J Struct Geol 32(12):2042–2071

    Article  Google Scholar 

  • Irakarama M, Laurent G, Renaudeau J, Caumon G (2020) Finite difference implicit structural modeling of geological structures. Math Geosci 1:1–24

    Google Scholar 

  • Jadoon I, Ding L, Nazir J, Idrees M, Jadoon S (2020) Structural interpretation of frontal folds and hydrocarbon exploration, Western Sulaiman Fold Belt, Pakistan. Mar Pet Geol 117:104380. ISSN: 0264-8172

  • Jiang G, Wen Y, Li K, Fang L, Xu C, Zhang Y, Xu X (2018) A ne-trending oblique-slip fault responsible for the 2016 Zaduo earthquake (Qinghai, China) revealed by InSAR data. Pure Appl Geophys 175:4275–4288

    Article  Google Scholar 

  • Johnson E (1988) Multivariate statistical simulation. J R Stat Soc A Stat Soc 151(1):930–932

    Google Scholar 

  • Jordan I, Mitchell M (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    Article  Google Scholar 

  • Kearey P (1993) The encyclopedia of the solid earth sciences. Backwell Sci, Pub

    Google Scholar 

  • Kim Y, Sanderson D (2005) The relationship between displacement and length of faults: a review. Earth Sci Rev 68(3–4):317–334

    Article  Google Scholar 

  • Kim Y, Andrews J, Sanderson DJ (2000) Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England. Geosci J 4(2):53

    Article  Google Scholar 

  • Kim Y, Peacock D, Sanderson D (2003) Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island. Malta. J Struct Geol 25(5):793–812

    Article  Google Scholar 

  • Kimura H, Ishikawa N, Sato H (2011) Estimation of total lateral displacement including strike-slip offset and broader drag deformation on an active fault: tectonic geomorphic and paleomagnetic evidence on the Tanna fault zone in central Japan. Tectonophysics 501(1–4):87–97

    Article  Google Scholar 

  • Knipe J, Jones G, Fisher J (1998) Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction. Geol Soc Lond Spec Publ 147(1):vii–xxi

  • Kong Q, Allen M, Schreier L, Kwon W (2016) Myshake: a smartphone seismic network for earthquake early warning and beyond. Sci Adv 2(2):e1501055–e1501055

    Article  Google Scholar 

  • Korneva I, Tondi E, Agosta F, Rustichelli A, Spina V, Bitonte R, Di Cuia R (2014) Structural properties of fractured and faulted cretaceous platform carbonates, Murge Plateau (Southern Italy). Mar Pet Geol 57:312–326. ISSN: 0264-8172

  • Krizhevsky A, Sutskever I, Hinton G (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. ISSN: 0001-0782

  • Lajaunie C, Courrioux G, Manuel L (1997) Foliation fields and 3d cartography in geology: principles of a method based on potential interpolation. Math Geol 29(4):571–584. ISSN: 0882-8121

  • Laurent G, Caumon G, Bouziat A, Jessell M (2013) A parametric method to model 3d displacements around faults with volumetric vector fields. Tectonophysics 590:83–93

    Article  Google Scholar 

  • Laurent G, Ailleres L, Grose L, Caumon G, Jessell M, Armit R (2016) Implicit modeling of folds and overprinting deformation. Earth Planet Sci Lett 456:26–38

    Article  Google Scholar 

  • Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  Google Scholar 

  • Li Y, Oldenburg D (1996) 3-d inversion of magnetic data. Geophysics 61(2):394–408

    Article  Google Scholar 

  • Li Y, Oldenburg D (1998) 3-d inversion of gravity data. Geophysics 63(1):109–119

    Article  Google Scholar 

  • Li W, Wang J (2021) Residual learning of cycle-GAN for seismic data denoising. IEEE Access 9:11585–11597

    Article  Google Scholar 

  • Li Y, Jia D, Wang M, Shaw J, He J, Lin A, Xiong L, Rao G (2014) Structural geometry of the source region for the 2013 Mw 6.6 Lushan earthquake: implication for earthquake hazard assessment along the Longmen Shan. Earth Planet Sci Lett 390:275–286

    Article  Google Scholar 

  • Li B, Yan M, Zhang W, Fang X, Meng Q, Zan J, Chen Y, Zhang D, Yang Y, Guan C (2017) New paleomagnetic constraints on middle Miocene strike-slip faulting along the middle Altyn Tagh Fault. J Geophys Res Solid Earth 122(5):4106–4122

    Article  Google Scholar 

  • Li Z, Peng Z, Hollis D, Zhu L, Mcclellan J (2018) High-resolution seismic event detection using local similarity for large-n arrays. Sci Rep 8(1):1646

    Article  Google Scholar 

  • Li J, Wu X, Hu Z (2021) Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Trans Geosci Remote Sens 60:1–11

    Google Scholar 

  • Lin S, Williams F (1992) The origin of ridge-in-groove slickenside striae and associated steps in an S-C mylonite. J Struct Geol 14(3):315–321

    Article  Google Scholar 

  • Lin S, Jiang D, Williams F (2007) Importance of differentiating ductile slickenside striations from stretching lineations and variation of shear direction across a high-strain zone. J Struct Geol 29(5):850–862

    Article  Google Scholar 

  • Liu W, Cheng Q, Liu L, Wang Y, Zhang J (2020) Accelerating high-resolution seismic imaging by using deep learning. Appl Sci 10(7). ISSN: 2076-3417

  • Liu B, Yang S, Ren Y, Xu X, Jiang P, Chen Y (2021a) Deep-learning seismic full-waveform inversion for realistic structural models. Geophysics 86(1):R31–R44. ISSN: 0016-8033

  • Liu C, Li C, Chan P, Hung C, Lin M (2021b) 3D sandbox and numerical modeling of coseismic surface rupture induced by oblique-slip faulting and its interaction with embedded shallow foundation. Eng Geol 282(10):105990

    Article  Google Scholar 

  • Lovely P, Jayr S, Medwedeff D (2018) Practical and efficient three-dimensional structural restoration using an adaptation of the GeoChron model. AAPG Bull 102:1985–2016

    Article  Google Scholar 

  • Lowell J, Paton G (2018) Application of deep learning for seismic horizon interpretation. In: SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, pp 1976–1980

  • Mallet J (1992) Discrete smooth interpolation in geometric modelling. Comput Aided Des 24(4):178–191

    Article  Google Scholar 

  • Mallet J (2014) Elements of mathematical sedimentary geology: the GeoChron model. EAGE Publications

  • Martel S, Boger W (1998) Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock. J Geophys Res Solid Earth 103(B9):21299–21314

    Article  Google Scholar 

  • Maxelon M, Renard P, Courrioux G, Brndli M, Mancktelow N (2009) A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Comput Geosci 35(3):644–658. ISSN: 0098-3004

  • Morozov N, Kolesnikov Y, Tatarinov N (2012) Modeling the hazard levels of stress–strain state in structural blocks in Nizhnekanskii granitoid massif for selecting nuclear waste disposal sites. Water Resour 39(7):756–769. ISSN: 0097-8078

  • Moseley B, Nissen T, Markham A (2020) Deep learning for fast simulation of seismic waves in complex media. Solid Earth 11(4):1527–1549

    Article  Google Scholar 

  • Nelson R, Jones H (1987) Paleomagnetism and crustal rotations along a shear zone, Las Vegas range. Southern Nevada. Tectonics 6(1):13–33

    Article  Google Scholar 

  • Osagiede E, Duffy O, Jackson C, Wrona T (2014) Quantifying the growth history of seismically imaged normal faults. J Struct Geol 66:382–399

    Article  Google Scholar 

  • Park S, Lee S, Park J (2020) Data augmentation method for improving the accuracy of human pose estimation with cropped images. Pattern Recognit Lett 136:244–250. ISSN: 0167-8655

  • Passchier C, Mancktelow N, Grasemann B (2005) Flow perturbations: a tool to study and characterize heterogeneous deformation. J Struct Geol 27(6):1011–1026

    Article  Google Scholar 

  • Paul D, Mitra S (2015) Fault patterns associated with extensional fault-propagation folding. Mar Pet Geol 67:120–143. ISSN: 0264-8172

  • Pebesma E, Wesseling C (1998) Gstat: a program for geostatistical modelling, prediction and simulation. Comput Geosci 24(1):17–31. ISSN: 0098-3004

  • Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. Sci Adv 4:e1700578

    Article  Google Scholar 

  • Pham N, Fomel S, Dunlap D (2019) Automatic channel detection using deep learning. Interpretation 7(3):SE43–SE50. ISSN: 2324-8858

  • Philippe J (2019) Illuminating earth’s faults. Science (New York, NY) 366(6469):1076–1077

    Article  Google Scholar 

  • Pidlisecky A, Haber E, Knight R (2007) Resinvm3d: a 3d resistivity inversion package. Geophysics 72(2):1–10

    Article  Google Scholar 

  • Pigott J, Prapasanobon N (2011) 3-d seismic fault-plane images from offshore Myanmar, Gulf of Thailand, and Lake Maracaibo: insight into regional stresses and hydrocarbon migration pathways. In: AAPG International Conference and Exhibition, AAPG

  • Pollard D, Segall P (1987) Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. In: Fracture mechanics of rock, pp 277–347

  • Ramsay G (1967) The folding and fracturing of rocks. McGraw Hill Book Company

  • Ramsay G, Huber M (1987) The techniques of modern structural geology. Volume 2: folds and fractures. Academic Press

  • Ray K (2018) Inverted fold hinge: an end member of hinge rotation by superposed buckle folding in the Precambrian terrain of western India. J Struct Geol 116:260–265

    Article  Google Scholar 

  • Reches Z, Eidelman A (1995) Drag along faults. Tectonophysics 247(1–4):145–156

    Article  Google Scholar 

  • Reichstein M, Camps G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat (2019) Deep learning and process understanding for data-driven earth system science. Nature 566(7743):195

  • Rippon J (1984) Contoured patterns of the throw and hade of normal faults in the Coal Measures (Westphalian) of north-east Derbyshire. Proc Yorks Geol Soc 45(3):147–161

    Article  Google Scholar 

  • Rivenæs J, Otterlei C, Zachariassen E, Dart C, Sjøholm J (2005) A 3D stochastic model integrating depth, fault and property uncertainty for planning robust wells, Njord Field, offshore Norway. Pet Geosci 11(1):57–65

    Article  Google Scholar 

  • Roe P, Georgsen F, Abrahamsen P (2014) An uncertainty model for fault shape and location. Math Geosci 46(8, SI):957–969. ISSN: 1874-8961

  • Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Springer

    Google Scholar 

  • Rosenbaum M, Culshaw M (2003) Communicating the risks arising from geohazards. J R Stat Soc Ser A 166(2):261–270

    Article  Google Scholar 

  • Ross Z, Meier M, Hauksson E (2018) P-wave arrival picking and first-motion polarity determination with deep learning. JGRB 123:5120–5129

    Google Scholar 

  • Sander D, Willett KW, Joni D (2015) Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon Not R Astron Soc 2:2

    Google Scholar 

  • Sandwell D (1987) Biharmonic spline interpolation of geos-3 and seasat altimeter data. Geophys Res Lett 14(2):139–142

    Article  Google Scholar 

  • Schneeberger R, Varga M, Egli D, Berger A, Kober F, Wellmann F, Herwegh M (2017) Methods and uncertainty estimations of 3-d structural modelling in crystalline rocks: a case study. Solid Earth 8(5):987–1002

    Article  Google Scholar 

  • Schuh M, Thieulot C, Cupillard P, Caumon G (2020) Towards the application of stokes flow equations to structural restoration simulations. Solid Earth Discussions 1–35. ISSN: 1869-9537

  • Sellars S (2019) Rise of the machines. Br Dent J 227:947

    Article  Google Scholar 

  • Shaw J, Plesch A, Tape C, Suess P, Jordan T, Ely G, Hauksson E, Tromp J, Tanimoto T, Graves R et al (2015) Unified structural representation of the southern California crust and upper mantle. Earth Planet Sci Lett 415:1–15

    Article  Google Scholar 

  • Shi Y, Wu X, Fomel S (2019) Saltseg: automatic 3d salt segmentation using a deep convolutional neural network. Interpretation 7(3):SE113–SE122

  • Stabler C (1968) Simplified Fourier analysis of fold shapes. Tectonophysics 6(4):343–350

    Article  Google Scholar 

  • Stowe C (1988) Application of Fourier analysis for computer representation of fold profiles. Tectonophysics 156(3–4):303–311

    Article  Google Scholar 

  • Sun Y, Liu L (2018) Structural evolution of thrust-related folds and associated fault systems in the eastern portion of the deep-water Niger delta. Mar Pet Geol 92:285–307. ISSN: 0264-8172

  • Taniyama H (2017) Distinct element analysis of overburden subjected to reverse oblique-slip fault. J Struct Geol 96:90–101

    Article  Google Scholar 

  • Tearpock D, Bischke R (2002) Applied subsurface geological mapping with structural methods. Pearson Education

  • Teper L, Lisek A (2006) Analysis of displacement geometry: a tool for identifying kinematic form of fault. Publ Inst Geophys Pol Acad Sci M 29(395):119–130

    Google Scholar 

  • Teper L, Lisek A (2010) Przestrzenna zmiennosc warunkow deformacji gorotworu w rejonie siodla glownego wyznaczona na podstawie badan geometrii uskokow (spatial variability of rock mass deformation conditions in the region of the main saddle determined on the basis of fault geometry study). In: Zuberek WM, Jochymczyk L (eds) Geneza i charakterystyka zagrozenia sejsmicznego w gornoslaskim zaglebiu weglowym (origin and characteristics of seismic hazard in the upper silesian coal basin). Wydawnictwo Uniwersytetu Slaskiego, Katowice (in Polish), pp 14–26

  • Thibert B, Gratier J, Morvan J (2005) A direct method for modeling and unfolding developable surfaces and its application to the Ventura Basin (California). J Struct Geol 27(2):303–316. ISSN: 0191-8141

  • Tschannen V, Delescluse M, Ettrich N, Keuper J (2020) Extracting horizon surfaces from 3D seismic data using deep learning. Geophysics 85(3):N17–N26. ISSN: 0016-8033

  • Twiss R, Moores E (1992) Structural geology

  • Walsh J, Watterson J (1987) Distributions of cumulative displacement and seismic slip on a single normal fault surface. J Struct Geol 9(8):1039–1046

    Article  Google Scholar 

  • Walsh J, Watterson J (1989) Displacement gradients on fault surfaces. J Struct Geol 11(3):307–316

    Article  Google Scholar 

  • Walsh J, Watterson J (1991) Geometric and kinematic coherence and scale effects in normal fault systems. Geol Soc Lond Spec Publ 56(1):193–203

    Article  Google Scholar 

  • Wang D, Chen G (2021) Seismic stratum segmentation using an encoder decoder convolutional neural network. Math Geosci 53(6):1355–1374. ISSN: 1874-8961

  • Wellmann F, Caumon G (2018) 3-d structural geological models: concepts, methods, and uncertainties. In: Advances in geophysics, vol 59. Elsevier, pp 1–121

  • Wiesmayr G, Grasemann B (2005) Sense and non-sense of shear in flanking structures with layer-parallel shortening: implications for fault-related folds. J Struct Geol 27(2):249–264

    Article  Google Scholar 

  • Wu X, Liang L, Shi Y, Fomel S (2019a) Faultseg3d: using synthetic data sets to train an end-to-end convolutional neural network for 3d seismic fault segmentation. Geophysics 84(3):IM35–IM45

  • Wu X, Liang L, Shi Y, Geng Z, Fomel S (2019b) Multitask learning for local seismic image processing: fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophys J Int 219(3):2097–2109

    Article  Google Scholar 

  • Wu X, Shi Y, Fomel S, Liang L, Zhang Q, Yusifov AZ (2019c) Faultnet3d: predicting fault probabilities, strikes, and dips with a single convolutional neural network. IEEE Trans Geosci Remote Sens 57(11):9138–9155

    Article  Google Scholar 

  • Wu X, Geng Z, Shi Y, Pham N, Fomel S, Caumon G (2020a) Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics 85(4):WA27–WA39

  • Wu X, Yan S, Qi J, Zeng H (2020b) Deep learning for characterizing paleokarst collapse features in 3-d seismic images. J Geophys Res Solid Earth 125(9):e2020JB019685

  • Zhang J, Jinyi LI, Zongjin MA, Ren W (2011) Structural traces of secondary faults (fractures) along the main faults and their reliability as kinematic indicators. Acta Geol Sin 85(5):1137–1149

    Article  Google Scholar 

  • Zhao T, Wang Y (2021) Statistical interpolation of spatially varying but sparsely measured 3d geo-data using compressive sensing and variational bayesian inference. Math Geosci 53(6):1171–1199

    Article  Google Scholar 

  • Zhong Z, Sun A, Wang Y, Ren B (2020a) Predicting field production rates for waterflooding using a machine learning-based proxy model. J Pet Sci Eng 194:107574

    Article  Google Scholar 

  • Zhong Z, Sun AY, Wu X (2020b) Inversion of time-lapse seismic reservoir monitoring data using cycleGAN: a deep learning based approach for estimating dynamic reservoir property changes. J Geophys Res Solid Earth 125(3):e2019JB018408

  • Zhong Z, Sun AY, Ren B, Wang Y (2021) A deep-learning-based approach for reservoir production forecast under uncertainty. SPE J 26:1314–1340

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences, China (grant no. XDA14010302). We thank the editors and reviewers for their helpful comments and suggestions. We gratefully acknowledge the Northwest Oilfield Branch Company, Sinopec, for generously supplying the field data for this study. We also thank You Li and Dr. Xinming Wu from the University of Science and Technology of China for their machine learning algorithm support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxian Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cai, Z., Si, X. et al. A Three-Dimensional Geological Structure Modeling Framework and Its Application in Machine Learning. Math Geosci 55, 163–200 (2023). https://doi.org/10.1007/s11004-022-10027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-022-10027-9

Keywords

Navigation