Skip to main content
Log in

Statistical Interpolation of Spatially Varying but Sparsely Measured 3D Geo-Data Using Compressive Sensing and Variational Bayesian Inference

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Real geo-data are three-dimensional (3D) and spatially varied, but measurements are often sparse due to time, resource, and/or technical constraints. In these cases, the quantities of interest at locations where measurements are missing must be interpolated from the available data. Several powerful methods have been developed to address this problem in real-world applications over the past several decades, such as two-point geo-statistical methods (e.g., kriging or Gaussian process regression, GPR) and multiple-point statistics (MPS). However, spatial interpolation remains challenging when the number of measurements is small because a suitable covariance function is difficult to select and the parameters are challenging to estimate from a small number of measurements. Note that a covariance function form and its parameters are key inputs for some methods (e.g., kriging or GPR). MPS is a non-parametric simulation method that combines training images as prior knowledge for sparse measurements. However, the selection of a suitable training image for continuous geo-quantities (e.g., soil or rock properties) faces certain difficulties and may become increasingly complicated when the geo-data to be interpolated are high-dimensional (e.g., 3D) and exhibit non-stationary (e.g., with unknown trends or non-stationary covariance structure) and/or anisotropic characteristics. This paper proposes a non-parametric approach that systematically combines compressive sensing and variational Bayesian inference for statistical interpolation of 3D geo-data. The method uses sparse measurements and their locations as the input and provides interpolated values at unsampled locations with quantified interpolation uncertainty as the output. The proposed method is illustrated using a series of numerical 3D examples, and the results indicate a reasonably good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ang AHS, Tang WH (2007) Probability concepts in engineering: emphasis on applications in civil and environmental engineering. Wiley, New York

    Google Scholar 

  • Beal MJ (2003) Variational algorithms for approximate Bayesian inference. University of College, London

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York, pp 461–517

    Google Scholar 

  • Bishop CM, Tipping ME (2000) Variational relevance vector machines. In: Proceedings of the sixteenth conference on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp 46–53

  • Buland A, Kolbjørnsen O, Hauge R, Skjæveland Ø, Duffaut K (2008) Bayesian lithology and fluid prediction from seismic prestack data. Geophysics 73:C13–C21

    Article  Google Scholar 

  • Caiafa CF, Cichocki A (2013a) Computing sparse representations of multidimensional signals using Kronecker bases. Neural Comput 25:186–220

    Article  Google Scholar 

  • Caiafa CF, Cichocki A (2013b) Multidimensional compressed sensing and their applications. Wiley Interdiscip Rev Data Min Knowl Disco 3:355–380

    Article  Google Scholar 

  • Candès EJ, Romberg JK (2005) Signal recovery from random projections. In: SPIE international symposium on electronic imaging: computational imaging III, San Jose, California, pp 76–86

  • Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Proc Mag 25:21–30

    Article  Google Scholar 

  • Cao Z-J, Zheng S, Li D, Phoon K-K (2018) Bayesian identification of soil stratigraphy based on soil behaviour type index. Can Geotech J 56(4):570–586

    Article  Google Scholar 

  • Ching J, Phoon KK, Wu SH (2016) Impact of statistical uncertainty on geotechnical reliability estimation. J Eng Mech. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001075

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Book  Google Scholar 

  • Dietrich C, Newsam G (1993) A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resour Res 29(8):2861–2869

    Article  Google Scholar 

  • Dimitrakopoulos R, Mustapha H, Gloaguen E (2010) High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Math Geosci 42(1):65

    Article  Google Scholar 

  • Dumitru M (2017). Sparsity enforcing priors in inverse problems via normal variance mixtures: model selection, algorithms and applications. arXiv preprint arXiv:1705.10354

  • Fenton GA (1999a) Estimation for stochastic soil models. J Geotech Geoenviron Eng 125(6):470–485

    Article  Google Scholar 

  • Fenton GA (1999b) Random field modeling of CPT data. J Geotech Geoenviron Eng 125(6):486–498

    Article  Google Scholar 

  • Gilanifar M, Wang H, Sriram LMK, Ozguven EE, Arghandeh R (2019) Multi-task Bayesian spatiotemporal Gaussian processes for short-term load forecasting. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2019.2928275

    Article  Google Scholar 

  • Griffiths DV, Marquez RM (2007) Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique 57(6):537–546

    Article  Google Scholar 

  • Hack R, Orlic B, Ozmutlu S, Zhu S, Rengers N (2006) Three and more dimensional modelling in geo-engineering. B Eng Geol Environ 65(2):143–153

    Article  Google Scholar 

  • Hillier MJ, Schetselaar EM, de Kemp EA, Perron G (2014) Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Math Geosci 46(8):931–953

    Article  Google Scholar 

  • Hong Y, Wang L, Zhang J, Gao Z (2020) 3D elastoplastic model for fine-grained gassy soil considering the gas-dependent yield surface shape and stress-dilatancy. J Eng Mech 146(5):04020037

    Google Scholar 

  • Horta A, Correia P, Pinheiro LM, Soares A (2013) Geostatistical data integration model for contamination assessment. Math Geosci 45:575–590

    Article  Google Scholar 

  • Hu Y, Wang Y, Zhao T, Phoon KK (2020) Bayesian supervised learning of site-specific geotechnical spatial variability from sparse measurements. ASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng 6(2):04020019

    Article  Google Scholar 

  • Huang Y, Beck JL, Wu S, Li H (2016) Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery. Probab Eng Mech 46:62–79

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17(8):1901

    Article  Google Scholar 

  • Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56:2346–2356

    Article  Google Scholar 

  • Kroese DP, Botev ZI (2015) Spatial process simulation. In: Stochastic geometry, spatial statistics and random fields, Springer, pp 369–404

  • Kroonenberg PM (2008) Applied multiway data analysis. Wiley, Hoboken

    Book  Google Scholar 

  • Lamorey G, Jacobson E (1995) Estimation of semivariogram parameters and evaluation of the effects of data sparsity. Math Geol 27(3):327–358

    Article  Google Scholar 

  • Largueche FZB (2006) Estimating soil contamination with Kriging interpolation method. Am J Appl Sci 3(6):1894–1898

    Article  Google Scholar 

  • Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6(3–4):228–241

    Article  Google Scholar 

  • Liu LL, Deng ZP, Zhang SH, Cheng YM (2018) Simplified framework for system reliability analysis of slopes in spatially variable soils. Eng Geol 239:330–343

    Article  Google Scholar 

  • Luo Z, Atamturktur S, Juang CH (2013) Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations. J Geotech Geoenviron Eng 139:13–23

    Article  Google Scholar 

  • Mariethoz G, Caers G (2015) Multiple-point geostatistics: stochastic modeling with training images. Wiley, London

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5(3):439–468

    Article  Google Scholar 

  • MathWorks I (2020) MATLAB: the language of technical computing. http://www.mathworks.com/products/matlab/. Accessed 6 May 2020

  • Moja SS, Asfaw ZG, Omre H (2018) Bayesian inversion in hidden Markov models with varying marginal proportions. Math Geosci 51(4):463–484

    Article  Google Scholar 

  • Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, London, pp 731–766

    Google Scholar 

  • Petersen KB (2004) The matrix cookbook. Technical University of Denmark. http://www.cim.mcgill.ca/~dudek/417/Papers/matrixOperations.pdf. Accessed 13 Apr 2019

  • Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36(4):612–624

    Article  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, London

    Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Salomon D (2007) Data compression: the complete reference. Springer, New York

    Google Scholar 

  • Schnabel U, Tietje O, Scholz RW (2004) Uncertainty assessment for management of soil contaminants with sparse data. Environ Manag 33(6):911–925

    Article  Google Scholar 

  • Shekaramiz M, Moon TK, Gunther JH (2017) Sparse Bayesian learning using variational Bayes inference based on a greedy criterion. In 2017 51st Asilomar conference on signals, systems, and computers, pp 858–862

  • Shekaramiz M, Moon TK, Gunther JH (2019) Exploration vs data refinement via multiple mobile sensors. Entropy 21(6):568

    Article  Google Scholar 

  • Shi C, Wang Y (2020) Non-parametric and data-driven interpolation of subsurface soil stratigraphy from limited data using multiple point statistics. Can Geotech J. https://doi.org/10.1139/cgj-2019-0843

    Article  Google Scholar 

  • Sivia D, Skilling J (2006) Data analysis: a Bayesian tutorial. OUP Oxford, New York

    Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    Google Scholar 

  • Wang Y, Zhao T (2017a) Bayesian assessment of site-specific performance of geotechnical design charts with unknown model uncertainty. Int J Numer Anal Methods Geomech 41:781–800

    Article  Google Scholar 

  • Wang Y, Zhao T (2017b) Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling. Géotechnique 67:523–536

    Article  Google Scholar 

  • Wang Y, Huang K, Cao Z (2013) Probabilistic identification of underground soil stratification using cone penetration tests. Can Geotech J 50(7):766–776

    Article  Google Scholar 

  • Wang Y, Cao Z, Li D (2016) Bayesian perspective on geotechnical variability and site characterization. Eng Geol 203:117–125

    Article  Google Scholar 

  • Wang H, Wellmann JF, Li Z, Wang X, Liang RY (2017) A segmentation approach for stochastic geological modeling using hidden Markov random fields. Math Geosci 49(2):145–177

    Article  Google Scholar 

  • Wang X, Wang H, Liang RY, Zhu H, Di H (2018) A hidden Markov random field model-based approach for probabilistic site characterization using multiple cone penetration test data. Struct Saf 70:128–138

    Article  Google Scholar 

  • Wang Y, Zhao T, Hu Y, Phoon K-K (2019) Simulation of random fields with trend from sparse measurements without detrending. J Eng Mech 145:04018130

    Google Scholar 

  • Williams CK (1998) Prediction with Gaussian processes: from linear regression to linear prediction and beyond. In: Learning in graphical models, Springer, Dordrecht, pp 599–621

  • Xiao T, Li DQ, Cao ZJ, Au SK, Phoon KK (2016) Three-dimensional slope reliability and risk assessment using auxiliary random finite element method. Comput Geotech 79:146–158

    Article  Google Scholar 

  • Yamamoto JK (2008) Estimation or simulation? That is the question. Comput Geosci 12(4):573–591

    Article  Google Scholar 

  • Yu L, Wei C, Jia J, Sun H (2016) Compressive sensing for cluster structured sparse signals: variational Bayes approach. IET Signal Process 10(7):770–779

    Article  Google Scholar 

  • Zhang T (2008) Incorporating geological conceptual models and interpretations into reservoir modeling using multiple-point geostatistics. Earth Sci Front 15(1):26–35

    Article  Google Scholar 

  • Zhang J, Zhang LM, Tang WH (2009) Bayesian framework for characterizing geotechnical model uncertainty. J Geotech Geoenviron Eng 135:932–940

    Article  Google Scholar 

  • Zhao T, Wang Y (2018a) Interpretation of pile lateral response from deflection measurement data: a compressive sampling-based method. Soils Found 58:957–971

    Article  Google Scholar 

  • Zhao T, Wang Y (2018b) Simulation of cross-correlated random field samples from sparse measurements using Bayesian compressive sensing. Mech Syst Signal Process 112:384–400

    Article  Google Scholar 

  • Zhao Q, Zhang L, Cichocki A (2015) Bayesian sparse Tucker models for dimension reduction and tensor completion. arXiv preprint arXiv:1505.02343

  • Zhao T, Hu Y, Wang Y (2018a) Statistical interpretation of spatially varying 2D geo-data from sparse measurements using Bayesian compressive sampling. Eng Geol 246:162–175

    Article  Google Scholar 

  • Zhao T, Montoya-Noguera S, Phoon KK, Wang Y (2018b) Interpolating spatially varying soil property values from sparse data for facilitating characteristic value selection. Can Geotech J 55(2):171–181

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project Nos. CityU 11213117 and CityU 11213119) and the Fundamental Research Funds for the Central Universities. The financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Appendices

Appendix A: Construction of B −3Dt

In this appendix, the 3D basis function \( \underline{{\mathbf{B}}}_{t}^{3D} \) is reconstructed from columns of three independent 1D basis function matrices, i.e., B1, B2, and B3, which have dimensions of N1 × N1, N2 × N2, and N3 × N3, respectively. The columns of B1, B2, and B3 represent orthonormal basis functions, e.g., discrete cosine functions. B1, B2, and B3 can be obtained using the formula for discrete cosine functions (see Salomon 2007) or constructed readily using a built-in function in commercial software, such as “dctmtx” in MATLAB (Mathworks 2020), which requires only N1, N2, and N3 as the input. A 3D basis function is then constructed as \( \underline{{\mathbf{B}}}_{i,j,k}^{3D} = {\varvec{b}}_{i}^{1} \otimes {\varvec{b}}_{j}^{2} \otimes {\varvec{b}}_{k}^{3} \) (i = 1, 2, …, N1; j = 1, 2, …, N2; k = 1, 2, …, N3). The subscript of \( \underline{{\mathbf{B}}}_{i,j,k}^{3D} \), i.e., “i, j, k” changes to “t” later in this paragraph. \( {\varvec{b}}_{i}^{1} \), \( {\varvec{b}}_{j}^{2} \), and \( {\varvec{b}}_{k}^{3} \) represent the ith, jth, and kth columns of B1, B2, and B3, respectively; “\( \otimes \)” represents an outer product and an element of \( \underline{{\mathbf{B}}}_{i,j,k}^{3D} \), such as the element indexed by (m, n, l), i.e., \( \underline{{\text{B}}}_{i,j,k}^{3D} (m,n,l) \), is expressed as \( \underline{{\text{B}}}_{i,j,k}^{3D} (m,n,l) = b_{i}^{1} (m)b_{j}^{2} (n)b_{k}^{3} (l) \) (Kroonenberg 2008). \( b_{i}^{1} (m) \), \( b_{j}^{2} (n) \), and \( b_{k}^{3} (l) \) are the mth, nth, and lth elements of \( {\varvec{b}}_{i}^{1} \), \( {\varvec{b}}_{j}^{2} \), and \( {\varvec{b}}_{k}^{3} \), respectively. After the construction of \( \underline{{\mathbf{B}}}_{i,j,k}^{3D} \), the subscript “(i, j, k)” of \( \underline{{\mathbf{B}}}_{i,j,k}^{3D} \) changes to t for derivation convenience. “t” is numbered in increasing order of i, followed by j and k, respectively. It is worth noting that although the discrete cosine function is adopted in this study to construct the 3D basis function, other basis functions (e.g., wavelets functions) can also be used in the proposed method. The discrete cosine function is adopted here because it has analytical function forms and the basis function can be readily obtained.

Appendix B: Derivation of Eq. (15)

The expression of KL divergence defined in Eq. (14) is expanded to

$$ \begin{aligned} KL(q||p) & = - \int {q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )} \ln \frac{{p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau |\varvec{y}^{3D} )}}{{q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )}}{\text{d}}\hat{\varvec{\omega }}^{3D} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau \\ & = - \int {q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )} [\ln p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau |\varvec{y}^{3D} )\\ &\quad - \ln q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )]{\text{d}}\hat{\varvec{\omega }}^{3D} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau . \\ \end{aligned} $$
(27)

In accordance with the rules of conditional probability, \( p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau |\varvec{y}^{3D} ) = p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ,\varvec{y}^{3D} )/p(\varvec{y}^{3D} ) \). Substituting this expression into Eq. (27) and rearranging the terms lead to

$$\begin{aligned} KL(q||p)& = - \int {q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )} [\ln p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ,y^{3D} )\\ &\quad - \ln q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ) - \ln p(\varvec{y}^{3D} )]{\text{d}}\hat{\varvec{\omega }}^{3D} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau . \end{aligned}$$
(28)

Note that ln[p(y3D)] is independent of the distribution \( q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ) \). Therefore, \( \int {q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )} \ln p(\varvec{y}^{3D} ){\text{d}}\hat{\varvec{\omega }}^{3D} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau = \ln p(\varvec{y}^{3D} ) \). As a result, Eq. (28) is simplified as

$$\begin{aligned} KL(q||p) = - \int {q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )} \left[ {\ln \frac{{p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ,\varvec{y}^{3D} )}}{{q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )}}} \right]{\text{d}}\hat{\varvec{\omega }}^{3D} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau + \ln p(\varvec{y}^{3D} ).\end{aligned} $$
(29)

Let \( L(q) = \int {q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )} \ln \left( {\frac{{q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ,\varvec{y}^{3D} )}}{{q(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau )}}} \right){\text{d}}\hat{\varvec{\omega }}^{3D} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau \). Equation (29) can then be rewritten as KL(q||p) = − L(q) + ln[p(y3D)]. Subsequently, ln[p(y3D)] = L(q) + KL(q||p), i.e., Equation (15) can be obtained.

Appendix C: Derivation of q(\( \hat{\varvec{\omega }}^{3D} \)), q(α), q(γ), and q(τ)

In this appendix, the framework for using VBI to derive the tractable distribution is introduced. Let Θ = [θ1, θ2, …, θn]T represent a set of random variables and “p(Θ|Data)” represent the true posterior PDF of Θ updated by “Data.” Suppose that “p(Θ|Data)” has no analytical solution and VBI is adopted to seek an approximate distribution \( q(\varvec{\varTheta}) \) that can properly represent p(Θ|Data). As mentioned in the main text, \( q(\varvec{\varTheta}) \) is usually factorized as \( q(\varvec{\varTheta}) = \prod\nolimits_{i = 1}^{n} {q(\theta_{i} )} \). In accordance with the derivation by Bishop (2006) (pp. 461–517), the q(θi) that minimizes the KL divergence between q(Θ) and p(Θ|Data) is then expressed as

$$ \begin{aligned} \ln [q(\theta_{i} )] & = \int {q(\varvec{\varTheta}_{ - i} )\ln p(\varvec{\varTheta},Data)} {\text{d}}\varvec{\varTheta}_{ - i} + const \\ & = \int {q(\varvec{\varTheta}_{ - i} )\ln [p(Data|\varvec{\varTheta})} p(\varvec{\varTheta})]{\text{d}}\varvec{\varTheta}_{ - i} + const, \\ \end{aligned} $$
(30)

where Θi represents Θ with θi removed and “const” represents a term that ensures that the integration of q(θi) = 1.

In this paper, the random variables of interest are \( \hat{\varvec{\omega }}^{3D} \), α, γ, and τ, and their approximate distribution can be individually derived using Eq. (30). Consider, for example, q(\( \hat{\varvec{\omega }}^{3D} \)). In accordance with Eq. (30), \( q(\hat{\varvec{\omega }}^{3D} ) \) is expressed as Eq. (17). Substituting Eqs. (6), (811), and (18) into Eq. (17) leads to

$$ \begin{aligned} \ln [q(\hat{\varvec{\omega }}^{3D} )] & = \int {q(\varvec{\alpha})q(\gamma )q(\tau )\ln p(\hat{\varvec{\omega }}^{3D} ,\varvec{\alpha},\gamma ,\tau ,y^{3D} )} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau + const_{1} \\ & = \int {q(\tau )\ln p(\varvec{y}^{3D} |\hat{\varvec{\omega }}^{3D} ,\tau )} {\text{d}}\tau + \int {q(\varvec{\alpha})\ln p(\hat{\varvec{\omega }}^{3D} |\varvec{\alpha})} {\text{d}}\varvec{\alpha}+ const_{2} , \\ \end{aligned} $$
(31)

where “const2” represents the term that does not involve \( \hat{\varvec{\omega }}^{3D} \). Note that q(α) and q(γ) are independent of \( \ln p(\varvec{y}^{3D} |\hat{\varvec{\omega }}^{3D} ,\tau ) \). Therefore, \( \int {q(\varvec{\alpha})q(\gamma )q(\tau )\ln p(\varvec{y}^{3D} |\hat{\varvec{\omega }}^{3D} ,\tau )} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau = \int {q(\tau )\ln p(\varvec{y}^{3D} |\hat{\varvec{\omega }}^{3D} ,\tau )} {\text{d}}\tau \). Similarly, \( \int {q(\varvec{\alpha})q(\gamma )q(\tau )\ln p(\hat{\varvec{\omega }}^{3D} |\alpha )} {\text{d}}\varvec{\alpha}{\text{d}}\gamma {\text{d}}\tau = \int {q(\varvec{\alpha})\ln p(\hat{\varvec{\omega }}^{3D} |\varvec{\alpha})} {\text{d}}\varvec{\alpha} \). Subsequently, substituting Eqs. (6) and (8) into Eq. (31) and rearranging the terms lead to

$$ \begin{aligned} \ln [q(\hat{\varvec{\omega }}^{3D} )] & = \int {q(\tau )\ln p(\varvec{y}^{3D} |\hat{\varvec{\omega }}^{3D} ,\tau )} {\text{d}}\tau + \int {q(\varvec{\alpha})\ln p(\hat{\varvec{\omega }}^{3D} |\varvec{\alpha})} {\text{d}}\varvec{\alpha}+ const_{2} \\ & = - \frac{{E(\tau )(\varvec{y}^{3D} - {\mathbf{A}}\hat{\varvec{\omega }}^{3D} )^{T} (\varvec{y}^{3D} - {\mathbf{A}}\hat{\varvec{\omega }}^{3D} )}}{2} - \frac{{(\hat{\varvec{\omega }}^{3D} )^{T} E(\varvec{D}^{\alpha } )^{T} \hat{\varvec{\omega }}^{3D} }}{2} + const_{3} , \\ \end{aligned} $$
(32)

where “const3” represents the terms that do not involve \( \hat{\varvec{\omega }}^{3D} \). Completing the square for \( \hat{\varvec{\omega }}^{3D} \) in Eq. (32) and rearranging the terms lead to

$$ \ln [q(\hat{\varvec{\omega }}^{3D} )] = - \frac{{(\hat{\varvec{\omega }}^{3D} )^{T} [{\mathbf{A}}^{T} {\mathbf{A}}E(\tau ) + E({\mathbf{D}}^{\alpha } )]\hat{\varvec{\omega }}^{3D} - 2(\hat{\varvec{\omega }}^{3D} )^{T} {\mathbf{A}}^{T} \varvec{y}^{3D} E(\tau ) + (\varvec{y}^{3D} )^{T} \varvec{y}^{3D} E(\tau )}}{2} + const_{3} . $$
(33)

Let \( {\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} = [{\mathbf{A}}^{T} {\mathbf{A}}E(\tau ) + E({\mathbf{D}}^{\alpha } )]^{ - 1} \). Equation (33) is rewritten as

$$ \ln [q(\hat{\varvec{\omega }}^{3D} )] = - \frac{{(\hat{\varvec{\omega }}^{3D} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1} \hat{\varvec{\omega }}^{3D} - 2(\hat{\varvec{\omega }}^{3D} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1} {\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} {\mathbf{A}}^{T} \varvec{y}^{3D} E(\tau )}}{2} + const_{4} , $$
(34)

where “const4” is a term that incorporates “const3” and new terms that do not involve \( \hat{\varvec{\omega }}^{3D} \). Let \( \varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} = {\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} {\mathbf{A}}\varvec{y}^{3D} E(\tau ) \). Equation (34) is rewritten as

$$ \begin{aligned} \ln [q(\hat{\varvec{\omega }}^{3D} )] & = - \frac{{(\hat{\varvec{\omega }}^{3D} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1} \hat{\varvec{\omega }}^{3D} - 2(\hat{\varvec{\omega }}^{3D} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1}\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} + (\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1}\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} }}{2} \\ & \quad + \frac{{(\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1}\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} }}{2} + const_{4} \\ & = \frac{{(\hat{\varvec{\omega }}^{3D} -\varvec{\mu}_{{\hat{\omega }^{3D} }} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1} (\hat{\varvec{\omega }}^{3D} -\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )}}{2} + const_{5} , \\ \end{aligned} $$
(35)

where \( \frac{{(\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1}\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} }}{2} \) is incorporated into the term “const5”. Therefore, \( q(\hat{\varvec{\omega }}^{3D} ) \) can be derived as

$$ \begin{aligned} q(\hat{\varvec{\omega }}^{3D} ) & = \frac{1}{{\sqrt {(2\pi )^{N} \det ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )} }}\exp \left[ { - \frac{{(\hat{\varvec{\omega }}^{3D} -\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1} (\hat{\varvec{\omega }}^{3D} -\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )}}{2}} \right] \\ & \quad \times \sqrt {(2\pi )^{N} \det ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )} \exp (const_{5} ), \\ \end{aligned} $$
(36)

A close examination of Eq. (36) shows that \( \frac{1}{{\sqrt {(2\pi )^{N} \det ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )} }}\) \(\exp \Big[ { - \frac{{(\hat{\varvec{\omega }}^{3D} -\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )^{T} ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )^{ - 1} (\hat{\varvec{\omega }}^{3D} -\varvec{\mu}_{{\hat{\varvec{\omega }}^{3D} }} )}}{2}} \Big] \) is the multivariate normal distribution, and its integration with respect to \( \hat{\varvec{\omega }}^{3D} \) is therefore 1. In addition, note that \( q(\hat{\varvec{\omega }}^{3D} ) \) is a PDF, which leads to \( \int {q(\hat{\varvec{\omega }}^{3D} )} {\text{d}}\hat{\varvec{\omega }}^{3D} = 1 \). As a result, the term “\( \sqrt {(2\pi )^{N} \det ({\varvec{\Sigma}}_{{\hat{\varvec{\omega }}^{3D} }} )} \exp (const_{5} ) \)” in Eq. (36) is equal to 1. In such a case, Eq. (36) is simplified as Eq. (19) in the main text.

Similarly, q(α) is derived as

$$ q({{\alpha }}) = \prod\limits_{t = 1}^{N} {\exp \left[ { - \frac{{a_{t} \alpha_{t} + b_{t} \alpha_{t}^{ - 1} }}{2}} \right]} (\alpha_{t} )^{p - 1} \times \frac{{(a_{t} /b_{t} )^{p/2} }}{{2K_{p} (\sqrt {a_{t} b_{t} } )}} = \prod\limits_{t = 1}^{N} {q(\alpha_{t} )} , $$
(37)

where \( a_{t} = E[(\hat{\omega }_{t}^{3D} )^{2} ] \), \( b_{t} = E(\gamma ) \), p = − 1/2, and \( q(\alpha_{t} ) \) = \( \exp \left[ { - \frac{{a_{t} \alpha_{t} + b_{t} \alpha_{t}^{ - 1} }}{2}} \right](\alpha_{t} )^{p - 1} \times \frac{{(a_{t} /b_{t} )^{p/2} }}{{2K_{p} (\sqrt {a_{t} b_{t} } )}} \), which is a generalized inverse Gaussian (GIG) PDF (Zhao et al. 2015; Dumitru 2017). The mean or expectation of αt is shown in Eq. (21a). In addition, note that E(α −1t ) is needed in the proposed method [see Eq. (24)], which cannot be directly evaluated even if q(αt) is available. This is because 1/αt is a non-linear function of αt. To address this problem, the PDF of 1/αt, i.e., q(α −1t ) is derived as (Ang and Tang 2007)

$$ \begin{aligned} q(\alpha_{t}^{ - 1} ) & = \frac{{(a_{t} /b_{t} )^{p/2} }}{{2K_{p} (\sqrt {a_{t} b_{t} } )}}\exp \left[ { - \frac{{a_{t} \alpha_{t}^{ - 1} + b_{t} \alpha_{t} }}{2}} \right](\alpha_{t}^{ - 1} )^{p - 1} \times \left| {\frac{{d(\alpha_{t}^{ - 1} )}}{{\alpha_{t} }}} \right| \\ & = \frac{{(a_{t} /b_{t} )^{p/2} }}{{2K_{p} (\sqrt {a_{t} b_{t} } )}}\exp \left[ { - \frac{{a_{t} \alpha_{t}^{ - 1} + b_{t} \alpha_{t} }}{2}} \right](\alpha_{t}^{ - 1} )^{ - p - 1} . \\ \end{aligned} $$
(38)

Equation (38) shows that (1/αt) follows a GIG with parameters bt, at, and −p. The mean of (1/αt), i.e., E(α −1t ), is obtained as Eq. (24).

In a manner similar to the derivation of q(\( \hat{\varvec{\omega }}^{3D} \)) and q(α), both q(τ) and q(γ) are derived to follow a Gamma distribution, which is shown in Eqs. (39) and (40), respectively

$$ q(\tau ) = \frac{{(d_{n} )^{{c_{n} }} }}{{\varGamma (c_{n} )}}\tau^{{c_{n} - 1}} \exp ( - \tau d_{n} ), $$
(39)
$$ q(\gamma ) = \frac{{(\gamma_{b} )^{{\gamma_{a} }} }}{{\varGamma (\gamma_{a} )}}\gamma^{{(\gamma_{a} - 1)}} \exp ( - \gamma \gamma_{b} ). $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Wang, Y. Statistical Interpolation of Spatially Varying but Sparsely Measured 3D Geo-Data Using Compressive Sensing and Variational Bayesian Inference. Math Geosci 53, 1171–1199 (2021). https://doi.org/10.1007/s11004-020-09913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-020-09913-x

Keywords

Navigation